【机器学习】Weighted LSSVM原理与Python实现:LSSVM的稀疏化改进

【机器学习】Weighted LSSVM原理与Python实现:LSSVM的稀疏化改进

一、LSSVM

1、LSSVM用于回归

本人在之前的博客(参考资料【1】)介绍了LSSVM的分类模型,本节将介绍LSSVM的回归模型。
对于回归算法,我们希望通过训练数据中学习到回归方程:

y = W ⋅ φ ( x ) + b y = W \cdot \varphi \left( x \right) + b y=Wφ(x)+b

其中 φ ( x ) \varphi \left( x \right) φ(x)用于将 x x x映射到更高维的特征空间内。
LSSVR回归模型的优化思想是使离回归平面距离最大的样本与回归平面之间的距离最小。优化问题为:

min ⁡ W , b 1 ∥ W ∥ s . t . y i = W φ ( x i ) + b \begin{array}{l} \mathop {\min }\limits_{W,b} \frac{1}{ {\left\| W \right\|}}\\ s.t.{y_i} = W\varphi \left( { {x_i}} \right) + b \end{array} W,bminW1s.t.yi=Wφ(xi)+b

为了解决存在部分特异点的情况,给每一个样本引入误差变量 e i {e_i} ei,,并在原始函数中加入误差变量的L2正则项。这样LSSVM的优化问题就转化为:

max ⁡ W , b 1 2 ∥ W ∥ 2 + λ 2 ∑ i = 1 m e i 2 s . t . y i = W φ ( x i ) + b + e i \begin{array}{l} \mathop {\max }\limits_{W,b} \frac{1}{2}{\left\| W \right\|^2} + \frac{\lambda }{2}\sum\limits_{i = 1}^m { {e_i}^2} \\ s.t.{y_i} = W\varphi \left( { {x_i}} \right) + b + {e_i} \end{array} W,bmax21W2+2λi=1mei2s.t.yi=Wφ(xi)+b+ei

由此可见,LSSVM分类模型和LSSVM回归模型的求解方法是相同的。
LSSVM回归模型的输出为:
f ( x ) = W ⋅ φ ( x ) + b = ∑ i = 1 m α i k ( x i , x ) + b f\left( x \right) = W \cdot \varphi \left( x \right) + b = \sum\limits_{i = 1}^m { {\alpha _i}k\left( { {x_i},x} \right) + b} f(x)=Wφ(x)+b=i=1mαik(xi,x)+b

2、LSSVM模型的缺点

缺少稀疏性:对于每一次预测都需要所有的训练数据参与。因为LSSVM模型求解中的Lagrange乘子都是非零数值(不同于SVM模型,只有支持向量对应的Lagrange乘子才是非零数值)。只有当误差变量 e i {e_i} ei的分布符合高斯分布的时候,支持向量数值的估计才是最优的【参考资料2】(个人理解:当误差变量 e i {e_i} ei的分布符合高斯分布的时候,有助于将异常的样本点排除)。

二、WLSSVM的数学原理

WLSSVM的执行步骤(参考资料【2】):

步骤一 :求解LSSVM模型的优化问题,求解出Lagrange乘子序列和误差 e i {e_i} ei序列。

步骤二:求出将误差 e i {e_i} ei序列变为高斯分布的每一个误差 e i {e_i}

  • 8
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值