【超参数寻优】粒子群算法(PSO) 超参数寻优的python实现

【超参数寻优】粒子群算法(PSO) 超参数寻优的python实现


粒子群优化算法(Particle swarm optimization,PSO)是模拟鸟群捕食行为的优化算法。不同于遗传算法(Genetic Alogrithm,GA),粒子群算法是有记忆的,之前迭代过程中的最优位置和最优方向都会保留下来并作用于粒子群的更新【参考资料1】。

一、算法原理

1、粒子群算法的名词解释

粒子群长度:粒子群长度等于每一个参数取值范围的大小。
粒子群维度:粒子群维度等于待寻优参数的数量。
粒子群位置:粒子群位置包含参数取值的具体数值。
粒子群方向:粒子群方向表示参数取值的变化方向。
适应度函数:表征粒子对应的模型评价指标。
pbest:(局部最优)pbest的长度等于粒子群长度,表示每一个参数取值的变化过程中,到目前为止最优适应度函数值对应的取值。
gbest:(全局最优)gbest的长度为1,表示到目前为止所有适应度函数值中最优的那个对应的参数取值。
惯性因子 w w w:惯性因子表示粒子保持的运动惯性。
局部学习因子 c 1 {c_1} c1:表示每个粒子向该粒子目前为止最优位置运动加速项的权重。
全局学习因子 c 2 {c_2} c2:表示每个粒子向目前为止全局最优位置运动加速项的权重。

2、粒子更新

粒子方向更新方程为:

v i = w × v i + c 1 × r a n d ( ) × ( p b e s t i − x i ) + c 2 × r a n d ( ) × ( g b e s t − x i ) {v_i} = w \times {v_i} + {c_1} \times rand() \times (pbes{t_i} - {x_i}) + {c_2} \times rand() \times (gbest - {x_i}) vi=w×vi+c1×rand()×(pbestixi)+c2×rand()×(gbestxi)

其中 v i {v_i}

下面是使用 Python 实现粒子群算法优化 XGBoost 参数寻优的示例代码: ```python import random from xgboost import XGBClassifier from sklearn.datasets import load_breast_cancer from sklearn.model_selection import cross_val_score # 定义超参数的搜索范围 learning_rate_range = (0.01, 0.1) n_estimators_range = (50, 300) max_depth_range = (3, 10) subsample_range = (0.5, 0.8) colsample_bytree_range = (0.5, 0.8) lambda_range = (0.1, 10) alpha_range = (0.1, 10) # 定义 PSO 算法的数 n_particles = 20 # 粒子数量 n_iterations = 50 # 迭代次数 w = 0.8 # 惯性因子 c1 = 2.0 # 个体学习因子 c2 = 2.0 # 全局学习因子 # 加载数据集 dataset = load_breast_cancer() X, y = dataset.data, dataset.target # 定义适应度函数 def fitness_function(position): # 将超参数列表转换为字典形式 params = {'learning_rate': position[0], 'n_estimators': int(position[1]), 'max_depth': int(position[2]), 'subsample': position[3], 'colsample_bytree': position[4], 'lambda': position[5], 'alpha': position[6]} # 构建 XGBoost 分类器 clf = XGBClassifier(**params) # 使用交叉验证评估模型性能 scores = cross_val_score(clf, X, y, cv=5) # 返回模型的平均准确率作为适应度函数值 return scores.mean() # 初始化粒子群 particles = [] v = [] p_best = [] g_best = None for i in range(n_particles): # 随机生成一个超参数组合 position = [random.uniform(*r) for r in [learning_rate_range, n_estimators_range, max_depth_range, subsample_range, colsample_bytree_range, lambda_range, alpha_range]] particles.append(position) # 随机生成一个速度向量 v.append([random.uniform(-1, 1) for _ in range(len(position))]) # 记录当前最优位置 p_best.append(position) if g_best is None or fitness_function(position) > fitness_function(g_best): g_best = position # 迭代优化 for t in range(n_iterations): for i in range(n_particles): # 更新速度 for j in range(len(particles[i])): r1 = random.uniform(0, 1) r2 = random.uniform(0, 1) v[i][j] = w * v[i][j] + c1 * r1 * (p_best[i][j] - particles[i][j]) + c2 * r2 * (g_best[j] - particles[i][j]) # 更新位置 particles[i] = [particles[i][j] + v[i][j] for j in range(len(particles[i]))] # 边界处理 particles[i] = [min(max(particles[i][j], r[0]), r[1]) for j, r in enumerate([learning_rate_range, n_estimators_range, max_depth_range, subsample_range, colsample_bytree_range, lambda_range, alpha_range])] # 更新个体最优值 if fitness_function(particles[i]) > fitness_function(p_best[i]): p_best[i] = particles[i] # 更新全局最优值 if fitness_function(particles[i]) > fitness_function(g_best): g_best = particles[i] # 打印当前迭代的最优值 print('Iteration {}: Best Fitness = {:.4f}'.format(t, fitness_function(g_best))) # 输出最优超参数组合 print('Best Parameters:', g_best) # 训练一个新的模型并进行预测 clf = XGBClassifier(learning_rate=g_best[0], n_estimators=int(g_best[1]), max_depth=int(g_best[2]), subsample=g_best[3], colsample_bytree=g_best[4], reg_lambda=g_best[5], reg_alpha=g_best[6]) clf.fit(X, y) ``` 在这个示例中,我们使用 PSO 算法优化 XGBoost 模型的 7 个超参数,即学习率、树的数量、决策树的最大深度、样本采样方式、特征采样方式、L2 正则化数和 L1 正则化数。我们首先定义了每个超参数的搜索范围,然后使用交叉验证的方式评估每个超参数组合的性能,并将模型的平均准确率作为适应度函数的值。接着,我们使用 PSO 算法随机生成一定数量的粒子,并对每个粒子进行初始化。在迭代过程中,我们根据当前的适应度函数值和历史最优适应度函数值,更新每个粒子的位置和速度,以便于探索更优的超参数组合。最后,我们将历史最优的超参数组合作为 XGBoost 模型的最优超参数,并训练一个新的模型,用于最终的预测任务。
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值