【H2.2.2.1. 上台阶问题】

状态: d p i dp_i dpi 表示从第 0 0 0 阶到第 i i i 阶的方案数

状态转移方程: d p i dp_i dpi = d p i − 2 + d p i − 3 ( 1 ≤ i ≤ n ) dp_{i-2} + dp_{i-3}(1\le i\le n) dpi2+dpi31in

答案: d p n dp_n dpn

边界: d p 0 = 1 , d p 1 = 0 , d p 2 = 1 , d p 3 = 1 dp_0=1,dp_1=0,dp_2=1,dp_3=1 dp0=1,dp1=0,dp2=1,dp3=1

时间复杂度: Θ ( n ) \Theta(n) Θ(n)

状态:$dp_i$ 表示从第 $0$ 阶到第 $i$ 阶的方案数

状态转移方程: $dp_i$ = $dp_{i-2} + dp_{i-3}1\le i\le n)$

答案:$dp_n$

边界:$dp_0=1,dp_1=0,dp_2=1,dp_3=1$

时间复杂度:$\Theta(n)$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值