如何出现 1?最小次变1!
题目如下:
给定一个正整数 n,你可以做如下操作:
(1) 如果 n 是偶数,则用 n / 2替换 n。
(2) 如果 n 是奇数,则可以用 n + 1或n - 1替换 n。
n 变为 1 所需的最小替换次数是多少?
示例 1:
输入:
8
输出:
3
解释:
8 -> 4 -> 2 -> 1
示例 2:
输入:
7
输出:
4
解释:
7 -> 8 -> 4 -> 2 -> 1
或
7 -> 6 -> 3 -> 2 -> 1
惯例 分析题目
- 如果出现偶数 == 整除2 == 替换一次
- 如果出现奇数 == n+1 / n - 1 替换一次并取其中较小值
不知各位看客窥见其中玄妙了吗?
这不是在 赤果果 的暗示
递归!!!!
分析过程 代码化
n类型 | 操作 |
---|---|
奇数 | return 1(使用n/2替代 n次数+1)+ integerReplacement(n / 2) (返回 n/2 的替代次数) |
偶数 | return 2 ((n-1)/2或者(n-1)/2替代 n次数+1) + min(integerReplacement((t- 1)/2),integerReplacement((t+1)/2)) (返回n-1)/2和(n-1)/2中的较小的替代次数) |
递归大法好ヽ( ̄▽ ̄)ノ
代码如下:
class Solution {
public:
int cnt = 0;
int integerReplacement(int n) {
if(n == 1) return 0;
if(n % 2 == 0) return 1 + integerReplacement(n / 2);
else {
long long t = n;
return 2 + min(integerReplacement((t-1)/2),integerReplacement((t+1)/2));
}
}
};