题目:
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
题目分析
- 要求:给定两节点 ==> 寻找最近公共祖先
分析
对于两节点的位置关系
- 位于某结点的两侧 ==> 公共祖先
- 同时位于某结点的右侧
- 同时位于某结点的左侧
解题思路
过程
如果根结点为空 ==> 返回根结点
如果根结点为两节点中的一节点 ==> 返回根结点
(说明两节点中一个结点是另外一个结点的祖先)
检测两节点是否在根结点两侧 ==> 递归
- left && right == true ==> 说明在两侧 ==>返回根结点
- left == true && right ==false ==>说明在根结点的左侧
- left== false && right == true ==>说明在根结点的右侧
代码如下
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(!root || p == root || q == root) return root; //其中一节点为另一节点的根结点
TreeNode* left = lowestCommonAncestor(root->left, p, q); //检测是否在左侧
TreeNode* right = lowestCommonAncestor(root->right, p ,q); //检测是否在右侧
if(left && right) return root; //检测是否在两侧
return left ? left : right;
}
};