题目
找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。
说明:
所有数字都是正整数。
解集不能包含重复的组合。
示例 1:
输入: k = 3, n = 7
输出: [[1,2,4]]
示例 2:
输入: k = 3, n = 9
输出: [[1,2,6], [1,3,5], [2,3,4]]
题目分析
- 要求 :和为n + 个数为k 的元素集合
遍历数组元素
判断是否是要插入元素集合 ==> 递归实现
解题思路
变量 | 作用 | 说明 |
---|---|---|
dfs | 递归函数 | start遍历开始的位置+k个数+n目标和+temp当前元素集合+ans结果 |
过程
对 temp 求元素和sum
i 为待插入元素
temp + i < target ==>递归
temp + i ==target && temp.size() == k - 1 ==>存入结果ans
代码如下
class Solution {
public:
vector<vector<int>> combinationSum3(int k, int n) {
vector<int> temp;
vector<vector<int>> ans;
dfs(1, k, n, temp, ans);
return ans;
}
void dfs (int start, int k, int n, vector<int> temp, vector<vector<int>> &ans) {
if(temp.size() > k) return;
int sum = 0;
for (int i = 0; i < temp.size(); ++i) sum += temp[i];
for (int i = start; i <= 9; i++) {
if(i + sum < n ) {
temp.push_back(i);
dfs(i + 1, k, n, temp, ans); //没达到目标和 递归寻找
temp.pop_back();
} else if (i + sum == n && temp.size() == k - 1) { //说明找到符合条件的元素集合
temp.push_back(i);
ans.push_back(temp);
return;
}
}
}
};