LeetCode 216 组合总和 III

文章描述了一个编程挑战,即找到所有1到9的数字中,和为n的不重复k个数的组合。解决方案采用了回溯算法,通过递归遍历所有可能的数字组合,当组合长度等于k且总和等于目标n时,将该组合添加到结果列表中。示例展示了不同k和n值下的输出结果。
摘要由CSDN通过智能技术生成

题目: 找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:只使用数字1到9,每个数字最多使用一次 ,返回所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。

示例 1:

输入: k = 3, n = 7
输出: [[1,2,4]]
解释:
1 + 2 + 4 = 7
没有其他符合的组合了。

示例 2:

输入: k = 3, n = 9
输出: [[1,2,6], [1,3,5], [2,3,4]]
解释:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
没有其他符合的组合了。

示例 3:

输入: k = 4, n = 1
输出: []
解释: 不存在有效的组合。
在[1,9]范围内使用4个不同的数字,我们可以得到的最小和是1+2+3+4 = 10,因为10 > 1,没有有效的组合。

思路:

依旧是套用回溯法的模板,如果path.size()==k时,再继续判断targetsum==sum是否相等,如果相等,将path加入到二维数组中,再返回,或者不符合要求返回。在for循环中,对sum值加i,并将i的值保存到一维path中,在后边回溯时候需要在执行sum-i,并且path中的值应该pop。

class Solution {
public:
	vector<vector<int>> result;
	vector<int> path;
	
	void backtracking(int targetsum, int k, int sum, int index) {
		if (path.size()==k) {
			if (targetsum==sum)result.push_back(path);
			return;
		}
		for (int i = index; i <= 9;i++) {
			sum += i;
			path.push_back(i);
			backtracking(targetsum,k,sum,i+1);
			sum -= i;
			path.pop_back();
		}
	}
};

int main() {
	Solution ss;
	int sum = 0;
	ss.backtracking(9,3,sum,1);
	vector<vector<int>> res = ss.result;
	for (vector<vector<int>>::iterator pos = res.begin(); pos != res.end();pos++) {
		for (vector<int>::iterator ppos = (*pos).begin(); ppos != (*pos).end();ppos++) {
			cout << *ppos << " ";
		}
		cout << endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值