【题目描述】:
平面上的N个点,求一个包含所有点的最小的凸多边形,这就是凸包问题了。这可以形象地想成这样:在地上放置一些不可移动的木桩,用一根绳子把他们尽量紧地圈起来,并且为凸边形,这就是凸包了。
【输入描述】:
第一行一个N,表示平面上的点数。
以下N行,每行一个x和y,表示一个点的横坐标和纵坐标。
【输出描述】:
输出最少的点形成的凸多边形,第一个点是y最小的点,如果y相同的点,x小的排在前面。
【样例输入】:
8
2720 -443
46 -2422
-2077 -1346
4520 -4963
-1791 1547
-1262 4025
-2997 913
-1667 -2499
【样例输出】:
4520 -4963
2720 -443
-1262 4025
-2997 913
-1667 -2499
【时间限制、数据范围及描述】:
时间:1s 空间:128M
N<=100000 -10000<=x,y<=10000
AC代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int Maxn=100005;
struct node{
int x,y;
}a[Maxn],ans[Maxn];
int n,k,lim;
int operator *(const node &a,const node &b){
return a.x*b.y-a.y*b.x;
}
node operator -(const node &a,const node &b){
node c;
c.x=a.x-b.x;c.y=a.y-b.y;
return c;
}
inline double dis(node a,node b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
bool cmp(node x,node y){
if(x.y!=y.y)return x.y<y.y;
return x.x<y.x;
}
bool check(node o,node x,node y){
return (x-o)*(y-o)>0?0:1;
}
void work(){
k=0;
double sum=0;
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&a[i].x,&a[i].y);
}
sort(a+1,a+1+n,cmp);
for(int i=1;i<=n;i++){
while(k>=2&&check(ans[k-1],ans[k],a[i])){k--;}
ans[++k]=a[i];
}
lim=k;
for(int i=n;i>=1;i--){
while(k>=lim+1&&check(ans[k-1],ans[k],a[i])){k--;}
ans[++k]=a[i];
}
k--;
for(int i=1;i<=k;i++){
printf("%d %d\n",ans[i].x,ans[i].y);
}
}
int main(){
work();
return 0;
}