【MATLAB】MVMD_LSTM神经网络时序预测算法

MVMD-LSTM算法结合MMD和LSTM,对多变量时间序列进行经验模态分解与长期依赖预测,适用于金融市场和气候预测等领域,但需注意其计算复杂度和数据需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

MVMD-LSTM神经网络时序预测算法是一种结合了多变量经验模态分解(Multivariate Multiscale Decomposition,MMD)和长短期记忆神经网络(LSTM)的时间序列预测方法。

MMD是一种多变量信号处理方法,能够同时对多个时间序列进行经验模态分解,提取出每个时间序列中的复杂模式和趋势。通过MMD,可以将多个时间序列分解为一系列固有模式函数(Intrinsic Mode Function,IMF),并提取出每个IMF的特征。

LSTM是一种深度学习模型,特别适合处理具有长期依赖关系的时间序列数据。LSTM通过引入记忆单元,可以学习并记住历史信息,使得模型在进行时间序列预测时能够考虑到长时间范围内的模式和趋势。

MVMD-LSTM算法的基本思路是将多个时间序列通过MMD进行分解,得到一系列固有模式函数(IMF)和残差项。然后,将这些IMF作为LSTM的输入,利用LSTM模型对每个IMF进行预测。通过构建多个独立的LSTM模型,每个模型都有不同的初始化条件和参数设置。每个LSTM模型都会对时间序列进行训练和预测,最后将它们的预测结果进行综合,例如通过平均或加权平均的方式得到最终的预测结果。

MVMD-LSTM算法的优势在于能够处理多变量时间序列数据,并能够学习到时间序列中的长期依赖关系。MMD能够同时对多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lwcah(全网各平台账号同名)

您的鼓励是我创作的最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值