- 博客(141)
- 收藏
- 关注
原创 【MATLAB】史上最全的15种回归预测算法全家桶
大家吃一顿火锅的价格便可以拥有15种回归预测算法,绝对不亏,知识付费是现今时代的趋势,而且都是我精心制作的教程,有问题可随时反馈~也可单独获取某一算法的代码(见每一算法介绍后文)~
2024-02-20 09:33:32 3520 3
原创 【MATLAB】基于VMD-SSA-GRU的回归预测模型
基于VMD-SSA-GRU的回归预测模型是一种集成了变分模态分解(VMD)、同步滑动平均(SSA)和门控循环单元(GRU)的复杂时间序列预测方法。下面将详细介绍这三种技术结合在一起时的基本理论。变分模态分解(VMD): 变分模态分解是一种信号处理技术,用于将非线性和非平稳信号分解为一组固有模态函数(IMFs),这些IMFs具有不同的频率特性。VMD通过优化算法来确定信号的内在频率成分,使得每个IMF都是一个局部振荡信号,并且满足一定的正交性条件。VMD的优势在于能够处理具有不同频率和幅度变化的复杂信号。
2024-05-27 09:16:09 1144
原创 【MATLAB】基于VMD-SSA-LSTM的回归预测模型
基于VMD-SSA-LSTM的回归预测模型是一种结合了多种时间序列分析和机器学习技术的综合模型。下面我将分别介绍这三个组成部分的基本原理,并解释它们是如何结合起来进行回归预测的。变分模态分解(VMD): 变分模态分解(VMD)是一种用于信号处理的时频分析方法。它通过将一个复杂信号分解为一系列具有不同中心频率和频率宽度的固有模态函数(IMFs)。这些IMFs可以看作是信号的内在振荡模式,它们具有不同的频率特性和能量分布。VMD的目标是自动地将信号分解为一组优化的IMFs,以更好地表示信号的内在结构。
2024-05-24 09:50:20 662
原创 【MATLAB】基于EMD-PCA-LSTM的回归预测模型
基于EMD-PCA-LSTM的回归预测模型是一种结合了经验模态分解(Empirical Mode Decomposition, EMD)、主成分分析(Principal Component Analysis, PCA)和长短期记忆网络(Long Short-Term Memory, LSTM)的复杂回归序列预测方法。下面分别介绍这三个组成部分的基本原理以及它们是如何结合在一起的。经验模态分解(EMD)
2024-05-23 21:20:17 633
原创 【MATLAB】GA_ELM神经网络时序预测算法
GA_ELM(Genetic Algorithm and Extreme Learning Machine)是一种结合了遗传算法和极限学习机的神经网络时序预测算法。它的核心思想是通过使用遗传算法来优化极限学习机的权重和偏差,从而提高预测模型的性能。下面是GA_ELM算法的详细介绍:极限学习机(ELM)简介:极限学习机是一种单隐层前馈神经网络,具有快速训练和良好的泛化性能。ELM的主要思想是随机初始化输入层到隐层的权重和偏差,并以快速的方式计算输出层的权重。
2024-04-13 23:00:14 601
原创 Word一打开背景色全黑了,如何解决~
三天假期,大家应该没学习的吧!哈哈哈,可是 office Word 趁大家玩的时候,偷偷加了个夜间模式,而且还是默认模式。一打开就是乌漆嘛黑一片黑底白字的 Word,这丑的样子让我无能为力,看的我头大。如图所示,即为恢复三天前Word的状态,且上方菜单栏:视图中没有切换模式的按钮了。可以实现正文部分的黑底白底的切换,但边界是黑的,还是很丑。找了半小时的系统按钮,终于被我找到解决方案了!5、如此就可以开开心心的写论文,做实验了。4、但是,白色又太刺眼,为了。,我们通常又进行如下操作。
2024-04-07 10:04:36 11294
原创 【MATLAB】GA_BP神经网络时序预测算法
GA_BP神经网络时序预测算法是一种结合了遗传算法(GA)和反向传播(BP)神经网络的时序预测方法。它利用了遗传算法的全局搜索和优化能力,以及BP神经网络的学习和逼近能力,可以更有效地预测时序数据。具体步骤如下:初始化神经网络的权重和偏置,并设置遗传算法的参数,如种群大小、交叉概率、变异概率等。将遗传算法应用于神经网络的权重和偏置的优化过程。首先,随机生成一定数量的个体作为初始种群,然后通过选择、交叉、变异等操作来优化种群中的个体,以找到最优解。使用BP算法对神经网络进行训练。
2024-04-05 21:31:02 1304 2
原创 【MATLAB】PSO_BP神经网络时序预测算法
PSO_BP神经网络时序预测算法是一种结合了粒子群优化(PSO)算法和反向传播(BP)神经网络的时序预测方法。它利用了PSO算法的全局搜索能力和BP神经网络的优化能力,能够更准确地预测时序数据。具体步骤如下:初始化神经网络的权重和偏置,并设置PSO算法的参数,如粒子数量、最大迭代次数等。将PSO算法应用于神经网络的权重和偏置的优化过程。在每次迭代中,粒子根据自身的位置和速度更新规则来调整权重和偏置,以找到最优解。使用BP算法对神经网络进行训练。
2024-04-03 17:45:43 580
原创 【MATLAB】GA_BP神经网络回归预测算法
GA_BP神经网络回归预测算法是一种将遗传算法(Genetic Algorithm, GA)与反向传播神经网络(Back Propagation Neural Network, BPNN)结合的优化算法,用于解决回归预测问题。以下是该算法的理论基础的详细介绍:遗传算法(Genetic Algorithm, GA): 遗传算法是一种模拟进化过程的优化算法,基于生物进化的原理,通过模拟自然选择、交叉和变异等操作,逐步优化解空间中的解。
2024-04-02 15:50:03 611
原创 【MATLAB】PSO_BP神经网络回归预测算法(适用光伏发电回归预测等)
PSO_BP神经网络回归预测算法是一种结合了粒子群优化算法(Particle Swarm Optimization, PSO)和反向传播算法(Back Propagation, BP)的神经网络回归预测算法。该算法主要用于解决回归问题,即通过训练神经网络模型来预测连续型输出变量。PSO_BP算法的基本思想是通过粒子群优化算法来优化神经网络的权重和偏置,以提高神经网络的拟合能力和泛化能力。粒子群优化算法是一种基于群体智能的优化算法,通过模拟鸟群觅食的行为来寻找最优解。
2024-04-01 17:32:52 493
原创 中科院《国际期刊预警名单》
针对中国科研界和科研管理部门关注的痛点问题,《预警名单》从期刊评价视角助力解决。《预警名单》采用专家咨询方式建立评价维度和指标,基于客观数据确定预警期刊。预警级别为高、中、低三个等级,预警风险依次减弱。
2024-03-11 08:45:35 1185
原创 【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱
附出图效果如下:附视频教程操作:【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱代码见视频及附件~
2024-03-11 08:43:41 655
原创 运行时错误‘53’:文件未找到:MathPage.WLL。Word粘贴复制时报错解决方案!
1、打开everything软件,搜索MathPage.WLL,复制一下MathPage.WLL这个文件,要根据自己电脑是32位还是64位区分哦。2、打开 C:\Program Files\Microsoft Office\root\Office16 目录,粘贴 MathPage. WLL 到里面替换即可。最近写文章使用 Word 时,粘贴复制总是出现这个报错,不能 ctrl+c 和 v 好叫人苦恼。百度大致检索了一些过程,仍然有必要记录自己的问题解决过程。文件未找到:MathPage.WLL。
2024-03-10 13:34:33 5052 2
原创 【MATLAB】语音信号识别与处理:一维信号NLM非局部均值滤波算法去噪及谱相减算法呈现频谱
附出图效果如下:附视频教程操作:【MATLAB】语音信号识别与处理:一维信号NLM非局部均值滤波算法去噪及谱相减算法呈现频谱代码见附件~
2024-03-10 13:33:27 847
原创 【MATLAB】语音信号识别与处理:小波去噪滤波算法去噪及谱相减算法呈现频谱
附出图效果如下:附视频教程操作:【MATLAB】语音信号识别与处理:小波去噪滤波算法去噪及谱相减算法呈现频谱代码见附件和视频~
2024-03-08 08:58:58 830
原创 【MATLAB】语音信号识别与处理:滤波器滤波算法去噪及谱相减算法呈现频谱
附出图效果如下:附视频教程操作:【MATLAB】语音信号识别与处理:滤波器滤波算法去噪及谱相减算法呈现频谱代码见附件及视频~
2024-03-07 08:49:43 647
原创 【MATLAB】语音信号识别与处理:卷积滑动平均滤波算法去噪及谱相减算法呈现频谱
附出图效果如下:附视频教程操作:【MATLAB】语音信号识别与处理:卷积滑动平均滤波算法去噪及谱相减算法呈现频谱代码见附件及视频~
2024-03-06 09:16:33 1039
原创 【MATLAB】语音信号识别与处理:滑动平均滤波算法去噪及谱相减算法呈现频谱
附出图效果如下:附视频教程操作:(代码见附件及视频)【MATLAB】语音信号识别与处理:滑动平均滤波算法去噪及谱相减算法呈现频谱。
2024-03-05 08:48:36 1167
原创 【MATLAB】语音信号识别与处理:高斯加权移动平均滤波算法去噪及谱相减算法呈现频谱
附出图效果如下:附视频教程操作:【MATLAB】语音信号识别与处理:高斯加权移动平均滤波算法去噪及谱相减算法呈现频谱代码见附件及视频~
2024-03-04 08:43:34 1329
原创 【MATLAB】语音信号识别与处理:T1小波滤波算法去噪及谱相减算法呈现频谱
附出图效果如下:附视频教程操作:【MATLAB】语音信号识别与处理:T1小波滤波算法去噪及谱相减算法呈现频谱代码见附件~
2024-03-03 15:18:57 748
原创 【MATLAB】语音信号识别与处理:SG滤波算法去噪及谱相减算法呈现频谱
附出图效果如下:附视频教程操作:【MATLAB】语音信号识别与处理:SG滤波算法去噪及谱相减算法呈现频谱。
2024-03-02 19:00:33 873
原创 【MATLAB】tvf_emd_ MFE_SVM_LSTM 神经网络时序预测算法
TVF-EMD_MFE_SVM_LSTM 神经网络时序预测算法是一种结合了变分模态分解(TVF-EMD)、多尺度特征提取(MFE)、聚类后展开支持向量机(SVM)和长短期记忆神经网络(LSTM)的复杂预测方法。
2024-02-28 09:45:09 1568
原创 【MATLAB】SVMD_ MFE_SVM_LSTM 神经网络时序预测算法
SVMD_MFE_SVM_LSTM神经网络时序预测算法结合了单变量分解(SVMD)、多尺度特征提取(MFE)、聚类后展开支持向量机(SVM)和长短期记忆神经网络(LSTM)的优点,旨在实现对时间序列数据的高精度预测。单变量分解(SVMD)SVMD是一种针对单变量时间序列的分解方法。它旨在将原始时间序列分解为多个成分或模态,以便更好地理解和预测其行为。这种分解可能基于矩阵分解技术,如奇异值分解(SVD),或其他适合单变量时间序列分解的技术。
2024-02-28 09:44:16 638
原创 【MATLAB】REMD_ MFE_SVM_LSTM 神经网络时序预测算法
REMD_MFE_SVM_LSTM神经网络时序预测算法是一种结合了REMD(Reservoir Enhanced Multi-scale Deep Learning)算法、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的复杂预测方法。
2024-02-28 09:43:18 1152
原创 【MATLAB】MVMD_ MFE_SVM_LSTM 神经网络时序预测算法
MVMD_MFE_SVM_LSTM神经网络时序预测算法结合了多变量多尺度分解(MVMD)、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的方法,旨在实现对多变量时间序列的高精度预测。
2024-02-28 09:42:28 1097
原创 【MATLAB】EWT_ MFE_SVM_LSTM 神经网络时序预测算法
EWT_MFE_SVM_LSTM神经网络时序预测算法结合了经验小波变换(EWT)、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的优点,旨在实现对复杂时间序列数据的高精度预测。
2024-02-28 09:41:36 661
原创 【MATLAB】VMD_ MFE_SVM_LSTM 神经网络时序预测算法
VMD_MFE_SVM_LSTM神经网络时序预测算法是一种结合了变分模态分解(VMD)、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的复杂预测方法。
2024-02-27 08:44:48 541
原创 【MATLAB】小波 MFE_SVM_LSTM 神经网络时序预测算法
小波MFE_SVM_LSTM神经网络时序预测算法是一种结合了小波变换、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的复杂预测方法。小波变换(Wavelet Transform)小波变换是一种信号处理方法,能够将信号分解为不同频率和尺度的分量,并对每个分量进行时频分析。通过小波变换,可以将时间序列数据转化为小波系数,这些系数能够更好地表示时间序列中的复杂模式和趋势。小波变换具有处理非线性、非平稳信号的能力,因此在时序预测中非常有用。多尺度特征提取(MFE)
2024-02-26 08:49:43 856
原创 【MATLAB】ICEEMDAN_ MFE_SVM_LSTM 神经网络时序预测算法
ICEEMDAN是指“改进的完全扩展经验模态分解与自适应噪声”(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise),它是CEEMDAN的一种改进版本。与CEEMDAN类似,ICEEMDAN也是一种用于分解非线性、非平稳信号的方法,它通过引入自适应噪声来提高分解的准确性和稳定性。ICEEMDAN分解:首先,利用ICEEMDAN算法将原始时间序列分解为一系列固有模式函数(IMF)和一个残差序列。
2024-02-25 12:35:42 737
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人