【MATLAB】VMD_ MFE_SVM_LSTM 神经网络时序预测算法

本文介绍了VMD_MFE_SVM_LSTM神经网络算法,一种结合变分模态分解、多尺度特征提取、SVM和LSTM的复杂预测方法。该算法在金融、气象和能源等领域有广泛应用,但计算复杂度较高。附有出图效果和代码获取途径。
摘要由CSDN通过智能技术生成

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

VMD_MFE_SVM_LSTM神经网络时序预测算法是一种结合了变分模态分解(VMD)、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的复杂预测方法。下面是对该算法的详细介绍:

1. 变分模态分解(VMD)

  • VMD是一种信号处理方法,用于将复杂的信号分解为多个模态或分量。与传统的模态分解方法(如EMD、EEMD等)不同,VMD是基于变分原理和约束条件进行优化求解的。

  • VMD通过构造和求解约束变分问题,将信号分解为一系列具有稀疏特性的模态函数。这些模态函数在频域内具有紧凑的频谱,能够更准确地描述信号中的不同成分。

  • 由于VMD具有明确的数学基础和优化求解过程,因此它在处理非线性、非平稳信号时具有更高的准确性和稳定性。

2. 多尺度特征提取(MFE)

  • MFE技术用于从分解后的模态函数中提取多尺度特征。这些特征包括统计特性、频域特性、时域特性等,能够全面描述信号在不同尺度上的行为。

  • 通过MFE,算法能够捕捉到信号中的局部和全局特征,为后续的预测模型提供更丰富、更有代表性的信息。

3. 支持向量机(SVM)

  • SVM是一种常用的监督学习算法,适用于分类和回归问题。在时序预测中,SVM可以利用历史数据和提取的多尺度特征来训练一个预测模型。

  • 该模型通过寻找一个最优超平面来分割数据,实现分类或回归任务。SVM具有处理高维数据和非线性关系的能力,因此在时序预测中表现出良好的性能。

4. 长短期记忆神经网络(LSTM)

  • LSTM是一种特殊的循环神经网络(RNN),适用于处理长时间序列数据。它通过内部的门控机制和存储单元来捕捉序列中的长期依赖关系。

  • 在VMD_MFE_SVM_LSTM算法中,LSTM被用来进一步优化SVM的预测结果。具体而言,将每个模态函数和提取的多尺度特征作为LSTM的输入,通过LSTM的学习和预测,得到最终的预测结果。

综上所述,VMD_MFE_SVM_LSTM神经网络时序预测算法结合了变分模态分解、多尺度特征提取、支持向量机和长短期记忆神经网络等多种技术的优势,实现了对原始时间序列的高精度和稳定预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域具有广泛的应用前景。然而,需要注意的是,该算法的计算复杂度较高,需要适当的优化和调整以适应不同的应用场景。

2 出图效果

附出图效果如下:

3 代码获取

代码见附件~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lwcah(全网各平台账号同名)

您的鼓励是我创作的最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值