有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~
1 基本定义
VMD_MFE_SVM_LSTM神经网络时序预测算法是一种结合了变分模态分解(VMD)、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的复杂预测方法。下面是对该算法的详细介绍:
1. 变分模态分解(VMD)
-
VMD是一种信号处理方法,用于将复杂的信号分解为多个模态或分量。与传统的模态分解方法(如EMD、EEMD等)不同,VMD是基于变分原理和约束条件进行优化求解的。
-
VMD通过构造和求解约束变分问题,将信号分解为一系列具有稀疏特性的模态函数。这些模态函数在频域内具有紧凑的频谱,能够更准确地描述信号中的不同成分。
-
由于VMD具有明确的数学基础和优化求解过程,因此它在处理非线性、非平稳信号时具有更高的准确性和稳定性。
2. 多尺度特征提取(MFE)
-
MFE技术用于从分解后的模态函数中提取多尺度特征。这些特征包括统计特性、频域特性、时域特性等,能够全面描述信号在不同尺度上的行为。
-
通过MFE,算法能够捕捉到信号中的局部和全局特征,为后续的预测模型提供更丰富、更有代表性的信息。
<