有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~
1 基本定义
VMD_MFE_SVM_LSTM神经网络时序预测算法是一种结合了变分模态分解(VMD)、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的复杂预测方法。下面是对该算法的详细介绍:
1. 变分模态分解(VMD)
-
VMD是一种信号处理方法,用于将复杂的信号分解为多个模态或分量。与传统的模态分解方法(如EMD、EEMD等)不同,VMD是基于变分原理和约束条件进行优化求解的。
-
VMD通过构造和求解约束变分问题,将信号分解为一系列具有稀疏特性的模态函数。这些模态函数在频域内具有紧凑的频谱,能够更准确地描述信号中的不同成分。
-
由于VMD具有明确的数学基础和优化求解过程,因此它在处理非线性、非平稳信号时具有更高的准确性和稳定性。
2. 多尺度特征提取(MFE)
-
MFE技术用于从分解后的模态函数中提取多尺度特征。这些特征包括统计特性、频域特性、时域特性等,能够全面描述信号在不同尺度上的行为。
-
通过MFE,算法能够捕捉到信号中的局部和全局特征,为后续的预测模型提供更丰富、更有代表性的信息。
3. 支持向量机(SVM)
-
SVM是一种常用的监督学习算法,适用于分类和回归问题。在时序预测中,SVM可以利用历史数据和提取的多尺度特征来训练一个预测模型。
-
该模型通过寻找一个最优超平面来分割数据,实现分类或回归任务。SVM具有处理高维数据和非线性关系的能力,因此在时序预测中表现出良好的性能。
4. 长短期记忆神经网络(LSTM)
-
LSTM是一种特殊的循环神经网络(RNN),适用于处理长时间序列数据。它通过内部的门控机制和存储单元来捕捉序列中的长期依赖关系。
-
在VMD_MFE_SVM_LSTM算法中,LSTM被用来进一步优化SVM的预测结果。具体而言,将每个模态函数和提取的多尺度特征作为LSTM的输入,通过LSTM的学习和预测,得到最终的预测结果。
综上所述,VMD_MFE_SVM_LSTM神经网络时序预测算法结合了变分模态分解、多尺度特征提取、支持向量机和长短期记忆神经网络等多种技术的优势,实现了对原始时间序列的高精度和稳定预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域具有广泛的应用前景。然而,需要注意的是,该算法的计算复杂度较高,需要适当的优化和调整以适应不同的应用场景。
2 出图效果
附出图效果如下:
3 代码获取
代码见附件~