当代手势识别技术的潮流算法

本文探讨了当代手势识别技术,包括基于近红外成像和立体视觉的手势分割方法,如肤色模型、边缘检测和运动跟踪。进一步介绍了手势建模的静态和动态特征,以及特征匹配中的Hausdorff距离、模板匹配和HMM等。最后提到了特征降维与模式聚合的算法,如模糊自适应共振理论和ChiMerge算法,以及基于结构特征、视觉组合特征和改进LBP算法的手势识别研究。
摘要由CSDN通过智能技术生成

当代手势识别技术的潮流算法:

获取图像信息的主要方式为:近红外成像,双目立体视觉,普通图像;

        

1、手势分割:  

  静态方面有:肤色模型(色彩的聚类特征)、边缘轮廓提取法(canny边缘检测法)、质心手指等;

  动态方面有:运动跟踪(差值图像分割,camshaft,卡尔曼跟踪预测,背景剪除法等)。   

  还有适用于动静态的熵分析法等(从背景复杂的视频流中分割出手势区域并进行手势识别)。

  目前最常用的手势分割法为:基于单目视觉的手势分割,基于立体视觉的手势分割:

  1、基于单目视觉的手势分割:

      (1)利用肤色信息在YuV

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值