区间DP入门及平行四边形优化

区间DP, 指的就是对区间的DP, 主要的思想是依旧是最优子结构和无后效性的确保, 一般思路就是先对小区间进行操作得到最优解, 然后通过小区间的最优解来得到大区间的最优解。

利用dp[i][j]数组来表示从 i 到 j 区间合并的最优值。

这里笔者给出基本的区间DP模板帮助理解:

//n是区间长度,dp[i][j]存从i 到 j 区间合并的最优值
//w[i][j]表示从i 到 j的花费
for(i = 1;i <= n;i++)
    dp[i][i] = 初始值;
for(len = 2;len <= n;len++){//len选择区间长度
    for(i = 1;i <= n;i++){//枚举起点
        j = i + len - 1;//合并终点
        if(j > n)break;//不可越界
        for(k = i;k < j;k++)//枚举分割点,寻找最优分割
            dp[i][j] = max(dp[i][j], dp[i][k] + dp[k + 1][j] + w[i][j]);//状态转移
    }
}
    

学校OJ上有一个模板题:石子合并

石子合并1

Time Limit: 1000 MS    Memory Limit: 32768 KB
Total Submission(s): 143    Accepted Submission(s):

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值