血压的测量和预测是心脏病患者和有心脏问题的人的一个重要条件,应该保持持续的控制。在这项研究中,基于从使用袖带的个体获得的振荡波形,振荡波形分为三个周期。第一个周期是从起点到收缩压(SBP),第二个周期是从收缩压(SBP)到舒张压(DBP)之间,第三个周期是从舒张压(DBP)到波形结束之间。在数据集中,收缩压点对应的拍的属性标记为1,舒张压点对应的拍的属性标记为2。其他节拍用0标记。在这项研究中,数据集首先被重新标记。收缩期搏动标记为1,收缩期到舒张期的搏动标记为2,舒张期到结束标记为3。重新标记后,350个测量值,300个测量值分为训练数据子集,50个测量值分为测试数据子集。用300个子集训练分类器,生成分类器模型。利用生成的模型对测试数据子集中的脉冲序列进行分类。在发现的标签系列中,将前1至2个标签标记为收缩压点,最后2至3个标签标记为舒张压点,并估计相应的袖带压力为收缩压和舒张压值。通过对这些时间段进行分类,收缩压(SBP)和舒张压(DBP)值使用三种分类算法进行估计,包括k近邻(kNN)、加权k近邻(WkNN)和Bagged Trees算法。为了评估预测算法的性能,使用了四种不同的性能指标,包括MAE(平均绝对误差)、MSE(均方误差)、RMSE(均方根误差)和R2。对于使用kNN算法、加权kNN和Bagged Trees估计SBP值,得到的MAEs分别为3.590、3.520和4.499。利用kNN算法、加权kNN算法和Bagged树算法估计DBP值,得到的MAEs分别为11.077、11.032和13.069。实验结果表明,该方法可以作为一种新的方法用于血压的估计。
从示波法中找到SBP和DBP点的图形表示:(a)袖带压力(CP);(b) 示波;(c) 示波包络(OMW)
在本研究中,使用了 BP Data-UNSW 数据集 [1]。数据集总共包含 350 条记录。该选择是从 155 名受试者收集的 643 条记录中选出的, 没有任何噪音或运动伪影。记录过程中,袖口压力、示波波形和以 500 Hz 采样的柯氏音。该数据集由 9个特征组成。这些特征在表 1 中给出。
数据集中的第一行显示了标签。 SBP 和 DBP 点分别标记为 1 和 2。其他点标记为 0。在预处理步骤中,找到了示波波的包络,并且特征被提取出来。 SBP和DBP点由柯氏音确定。然而,由于没有根据确定 DBP 点的标准,对检测到的点进行目视检查 。示波波与袖带压力的波形如图 3 所示。在该图中,蓝线用长示波波形标准化,红线用长示波波形标准化是袖带压力。绿色区域代表收缩前区域,黄色区域代表收缩点和舒张点之间的区域,紫色区域代表舒张后区域。
虽然血压估计是一个回归问题,但在本研究中它被转化为分类问题。除了数据集中给出的收缩压和舒张压点标签外,它们还被重新标记为收缩压前、收缩压和舒张压之间以及舒张压后。研究中使用的框图如图4所示。
使用示波波获得的数据集,首先重新标记示波波包络。使用的标签在表2中给出。
图 5 显示了根据特征的类别分布。可以清楚地看到,类根据特征交织在一起。数据集分为训练子集和测试子集。 300 名受试者被定义为训练,50 名受试者被定义为测试子 集。首先,分类器针对每个类别进行训练,并为测试数据子集生成模型.
图 6 给出了样本测量过程的实际值和 预测值。对血压测量周期中发生的所有心跳进行类别估计。
本研究使用了三种不同的分类算法。它们是 k 近邻 (kNN)、加权 kNN (WkNN) 和Bagged Trees。k 近邻 (kNN)该分类器是一种非参数惰性学习算法。在该算法中,测量新数据和训练数据之间的距离,并将新数据标记为K最近类别的值。加权 kNN (WkNN)该分类器的工作方式为 kNN。 WkNN 距离根据特征进行加权。权重是在数据训练期间确定的。因此,每个邻居对邻域得分都有不同程度的贡献。Bagged Trees这种方法基本上是一种集成决策树结构。每个决策树评估数据,并根据所有估计做出最终决策.