当今众多的基于Python的AI框架(如MindSpore、PyTorch等)给了开发者非常便利的编程的条件,我们可以用Python的简单的语法写代码,然后由框架在后端自动编译成可以在GPU上高效计算的程序。而对于一些定制化比较高的算法,MindSpore也支持了相关的接口,允许开发者自己开发相应的CUDA算子(需要统一接口),然后编译成.so
动态链接库,再用MindSpore内置的函数加载为本地算子。本文针对这种方案写一个简单的示例。
程序结构
本地自己手写一个CUDA算子,一般至少需要两个文件和一个nvcc的环境,最好是在安装完成MindSpore的GPU版本之后,再尝试CUDA算子的引入。我这里使用的环境是10.1版本的nvcc:
$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Sun_Jul_28_19:07:16_PDT_2019
Cuda compilation tools, release 10.1, V10.1.243
$ python3 -m pip show mindspore
Name: mindspore
Version: 2.1.0
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /hom