Spark大数据分与实践笔记(第七章 Spark Streaming实时计算框架-02)

本文介绍了如何使用Spark Streaming的DStream编程实现网站热词排序,通过分析用户兴趣来优化网站内容。详细步骤包括在MySQL创建数据库和表以存储热词数据,添加MySQL依赖到项目,以及编写Scala类`HotWordBySort`实现热词统计排序。运行程序后,数据将被输入到指定端口并存储于Mysql的searchKeyWord表中。
摘要由CSDN通过智能技术生成

第七章 Spark Streaming实时计算框架

7.3.6 DStream实例——实现网站热词排序

接下来,以实现网站热词排序为例外分析出用户对网站哪些词感兴趣或者不感兴趣,以此来增加用户感兴趣词的内容,减少不感兴趣词的内容,从而提升用户访问网站的流量。在SparkStreaming中 是通过DStream编程实现热词排序,并将排名前三的热词输出到Mysql数据表中进行保存。具体实现步骤如下:
1.创建数据库和表
在MySQL数据库中创建数据库和表,用于接收处理后的数据,具体语句如下:

use spark;
create table searchKeyWord(insert_time date,keyword varchar(30),search_count integer);

上述语句中,字段insert_ time代表的是插入数据的日期;字段keyword代表的是热词;字段search_count代表的是在指定的时间内该热词出现的次数。
2.导入依赖
在pom.xm|文件中,添加Mysq|数据库的依赖,具体内容如下:

<dependency>
	<groupId>mysql</groupId>
	<artifactId>mysql-connector-java</artifactId>
	<version>8.0.30</version>
</dependency>

3.创建Scala类,实现热词排序
在spark_ _chapter07项目的/src/main/scala/cn.itcast.dstream文件夹下,创建一个名为"HotWordBySort"的Scala类, 用于编写Spark Streaming应用程序,实现热词统计排序,具体实现代码如文件所示。
文件7-6 HotWordBySort.scala

import java.sql.{
   DriverManager, Statement}
import org.apache.spark.{
   SparkConf, SparkContext}
import org.apache.spark.streaming
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

妉妉师姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值