[NOIP2003 普及组] 栈

这里是题目

P1044 [NOIP2003 普及组] 栈 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

题目背景

栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。

栈有两种最重要的操作,即 pop(从栈顶弹出一个元素)和 push(将一个元素进栈)。

栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙。

题目描述

宁宁考虑的是这样一个问题:一个操作数序列,1,2,\ldots ,n1,2,…,n(图示为 1 到 3 的情况),栈 A 的深度大于 nn。

现在可以进行两种操作,

  1. 将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的 push 操作)
  2. 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的 pop 操作)

使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由 1 2 3 生成序列 2 3 1 的过程。

(原始状态如上图所示)

你的程序将对给定的 nn,计算并输出由操作数序列 1,2,\ldots,n1,2,…,n 经过操作可能得到的输出序列的总数。

输入格式

输入文件只含一个整数 nn(1 \leq n \leq 181≤n≤18)。

输出格式

输出文件只有一行,即可能输出序列的总数目。

输入输出样例

输入 #1复制

3

输出 #1复制

5

说明/提示

【题目来源】

NOIP 2003 普及组第三题

题解

1、递归/记忆化搜索

看这个数据,我总感觉dfs会超时,然后真的超了?(没试过),于是很自然的,我们就会想到记忆化搜索,这也是做这题的一种技巧吧,但无论如何,这也是最基础的

  • 下面谈谈搜索(递归)思路:
  1. 既然记忆化搜索了,定义一个二维数组f[i,j]f[i,j],用下标 ii 表示队列里还有几个待排的数,jj 表示栈里有 jj 个数,f[i,j]f[i,j]表示此时的情况数
  2. 那么,更加自然的,只要f[i,j]f[i,j]有值就直接返回;
  3. 然后递归如何实现呢?首先,可以想到,要是数全在栈里了,就只剩1种情况了,所以:i=0i=0时,返回11;
  4. 然后,有两种情况:一种栈空,一种栈不空:在栈空时,我们不可以弹出栈里的元素,只能进入,所以队列里的数-1−1,栈里的数+1+1,即加上 f[i-1,j+1]f[i−1,j+1] ;另一种是栈不空,那么此时有出栈11个或者进11个再出11个 22种情况,分别加上 f[i-1,j+1]f[i−1,j+1] 和 f[i,j-1]f[i,j−1] ,便是此时的情况了,于是递归就愉快的结束了;

感谢看完我的漫长的思路,但到了这里你就可以跟程序说再见了(代码最后给);

2、递推/DPDP(动态规划)

我们只要顺着递归的思路来就好了:

  1. 据上面的递归,可知定义的 f[i,j]f[i,j] 中 i=0i=0 时这个数组的值都为1,同时,这也是递推边界。并且,我们用 ii 表示队列里的数,jj 表示出栈数,f[i,j]f[i,j]表示情况数;
  2. 既然我们愉快地得到了递推思路,愣着干嘛,因为即使初始化了我们也不可能直接用递归的思路写出递归!所以开始找规律:f[i,j]f[i,j]到底与什么有着不可告人的联系?其实这个很容易可以想到:当 ii 个数进栈,j-1j−1 个数出栈的时候,只要再出一个数,便是i个数进栈,jj 个数出栈的情况,同理,对于进栈 i-1i−1 个数,出栈 jj个数,在进栈一个数便是f[i,j]f[i,j]了,于是就有了递归式:f[i,j]=f[i-1,j+1]f[i,j]=f[i−1,j+1].
  3. 然而事实上这还没有完,因为 i=ji=j 时,栈空了,那么,此时就必须进栈了,则i-1i−1,有f[i,j]=f[i-1,j]f[i,j]=f[i−1,j];解释一下为什么这样会栈空:当队列和出栈的数都有i个数时,数的总数为 2i2i ,很明显的,栈里面没有元素了!

于是我们又快乐地解决了递推(其实就是DPDP)的做法,其实与递归大同小异,只不过一个通过函数实现,一个通过循环实现;但这还是基础啊~(代码后面给)

3、数论做法 卡特兰/CatalanCatalan

既然很多Dalao都说过,那我直接给式子了;

  • 递推式11:

f[n]=f[0]*f[n-1] + f[1]*f[n-2] + ... + f[n-1]*f[0] (n≥2)f[n]=f[0]∗f[n−1]+f[1]∗f[n−2]+...+f[n−1]∗f[0](n≥2)

然后按照这个递推式模拟就好了(代码后面给)

既然上面标了1,那就有递推式2~

  • 递推式22:

h[n]=h[n-1]*(4*n-2)/(n+1)h[n]=h[n−1]∗(4∗n−2)/(n+1)

依旧按式子模拟(代码后面给)

既然有2,那再来个3吧~

  • 递推式33:

h[n]=C[2n,n]/(n+1) (n=0,1,2,...)h[n]=C[2n,n]/(n+1)(n=0,1,2,...),CC是组合数

PS:C[m,n]=C[m-1,n-1]+C[m-1,n]PS:C[m,n]=C[m−1,n−1]+C[m−1,n]:且规定: C[n,0]=1 C[n,n]=1 C[0,0]=1C[n,0]=1C[n,n]=1C[0,0]=1

这个公式也叫组合数公式(下面那个也是)

(不知道组合数可以百度)

于是仍然把标程放到最后~

  • 递推式44:

h[n]=C[2n,n]-C[2n,n-1] (n=0,1,2,...)h[n]=C[2n,n]−C[2n,n−1](n=0,1,2,...) 组合数CC不解释了;

没有55了

但是有个Dalao写的组合数我没看懂,于是我搜集了各方资料,还是没看懂,不知道他写的组合数是怎么求的,虽然最后结果对了,但是组合数求出来都是错的( ̄_ ̄|||),不知道是不是巧合?

不管了,ACAC就好;(程序还是后面给~)

  • 但是,出现了一个问题,上面介绍了四种公式,哪种最好?其实是第4种:如果这个数太大,那么题目可能会要求取模,那么第11种nn太大的时候时空太大;第22种在取模运算中万一不小心整除了就凉了;第33种是除法运算,更行不通;唯有第44种,满足取模原则(加减无所谓),且不会出现倍数 WAWA 的情况,所以第44种解为最优解;

  • 接着,比较上面四种做法:很明显的,递推式长得差得不多,它们都源于卡特兰思想,那么就没什么好说的了,只是时空复杂度的不同而已;

当然,已经有3种做法了,我再给一种:高精度/打表

这种做法可以避免一切 WA(打表出省一?)

所以我们随便拿一种写个高精?

然而并不是的,我们需要找一个好写的,那就是卡特兰公式1!

因为这就只是个加法,而且只是为了打表而已(我只熟悉加法orz)

所有代码如下:

#include<cstdio>
#define MAX_N 20
#define ll long long
using namespace std;
int n;
ll f[MAX_N][MAX_N];
ll dfs(int i,int j)
{
	if(f[i][j]) return f[i][j]; 
	if(i==0)return 1; //边界 
	if(j>0) f[i][j]+=dfs(i,j-1);
	f[i][j]+=dfs(i-1,j+1);
	return f[i][j];
}
int main()
{
	scanf("%d",&n);
	printf("%lld",dfs(n,0));
	return 0;
}

//递归转递推  递推做法 
#include<cstdio>
#define MAX_N 20
#define ll long long
using namespace std;
int n;
ll f[MAX_N][MAX_N];
int main()
{
	scanf("%d",&n);
	for(int i=0;i<=n;i++)
	{
		f[0][i]=1;
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=i;j<=n;j++)
		{
			if(i==j)f[i][j]=f[i-1][j];
			else f[i][j]=f[i][j-1]+f[i-1][j];
		}
	}
	printf("%lld",f[n][n]);
	return 0;
}

//数论做法 卡特兰数
//公式1:
#include<cstdio>
#define MAX_N 20
#define ll long long
using namespace std;
int n;
ll f[MAX_N];
int main()
{
	f[0]=f[1]=1;
	scanf("%d",&n);
	for(int i=2;i<=n;i++)
	{
		for(int j=0;j<i;j++)
		{
			f[i]+=f[j]*f[i-j-1];
		}
	}
	printf("%lld",f[n]);
	return 0;
}

//公式2:
#include<cstdio>
#define MAX_N 20
#define ll long long
using namespace std;
int n;
ll f[MAX_N];
int main()
{
	f[0]=f[1]=1;
	scanf("%d",&n);
	for(int i=2;i<=n;i++)
	{
		f[i]+=f[i-1]*(4*i-2)/(i+1);
	}
	printf("%lld",f[n]);
	return 0;
}

//公式3:
#include<cstdio>
#define MAX_N 20
#define ll long long
using namespace std;
int n;
ll c[MAX_N*2][MAX_N];
int main(){

    scanf("%d",&n);
    for(int i=1;i<=2*n;i++)
    {
    	c[i][0]=c[i][i]=1;
    	for(int j=1;j<i;j++)
    	{
    		c[i][j]=c[i-1][j]+c[i-1][j-1];
		}
	}
    printf("%lld",c[2*n][n]/(n+1));
    return 0;
}

//公式4: 
#include<cstdio>
#define MAX_N 20
#define ll long long
using namespace std;
int n;
ll c[MAX_N*2][MAX_N];
int main(){

    scanf("%d",&n);
    for(int i=1;i<=2*n;i++)
    {
    	c[i][0]=c[i][i]=1;
    	for(int j=1;j<i;j++)
    	{
    		c[i][j]=c[i-1][j]+c[i-1][j-1];
		}
	}
    printf("%lld",c[2*n][n]-c[2*n][n-1]);
    return 0;
}

//高精/打表:
#include<iostream>
#include<cstdio> 
#include<cstring>
#define MAX_N 110
using namespace std;
int f[MAX_N][MAX_N],c[MAX_N];
inline int len(int a[]) 
{
    int i;
    for(i=60;i>=0;i--)//想要100个以上,这个i的范围要改 
    {
    	if(a[i]!=0) break;
	}   
    return i;
}
inline void add(int a[],int b[],int w)//高精加法 
{
    int lena=len(a),lenb=len(b);
    for(int i=0;i<=max(lena,lenb);i++)
    {
    	f[w][i]=a[i]+b[i];
	}
    for(int i=0;i<=max(lena,lenb)+1;i++) 
	{
        f[w][i+1]+=f[w][i]/10;
        f[w][i]%=10;
    }
}
inline void Catalan(int a[],int b[])//卡特兰 
{
    memset(c, 0, sizeof(c));
	int lena=len(a),lenb=len(b);
    for (int i=0;i<=lena;i++){
    	for (int j=0;j<=lenb;j++) 
    		c[i+j]+=a[i]*b[j];
	}      
    for (int i=0;i<=lena+lenb+1;i++)
	{
        c[i+1]+=c[i]/10;
        c[i]%=10;
    }
}
int main() 
{
    //int k;
    freopen("Catalan.txt","w"stdin);//文件操作; 
    f[0][0]=f[1][0]=1;
    for (int i=2;i<=100;i++)//同理,要多输出几个i就等于几 
    {
    	for (int j=0;j<i;j++) 
		{
            Catalan(f[j], f[i-j-1]);
            add(f[i],c,i);
        }
	}
    for(int i=1;i<=100;i++)//输出 卡特兰数 1-100,范围同上,要输出几个自己改 
    {
	    for (int j=len(f[i]);j>=0;j--)
	    {
	    	//printf("%d",f[i][j]);
			putchar((char)f[i][j]+'0');//比printf稍快?  
		}
		printf("\n");
	}
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值