1.邻接矩阵法
(1)邻接矩阵法定义
通过一个二维矩阵来表示图中各个顶点之间的连接关系。邻接矩阵中的行和列分别代表图中的顶点,而矩阵中的元素则表示对应顶点之间是否存在边。表示方式唯一
typedef struct{
ElementType vertex[maxVertexNum];// 顶点表
ElementType edge[maxVertexNum][maxVertexNum];// 邻接矩阵(边表)
int vertexNum,edgeNum;// 顶点数,边数
}adjacencyMatrix;
邻接矩阵法的空间复杂度为 O ( ∣ v ∣ 2 ) O(|v|^2) O(∣v∣2) ,适合用于稠密图。无向图的邻接矩阵是对称矩阵,可压缩存储
(2)计算顶点的度、入度、出度
类型 | 计算方式 |
---|---|
度(无向图) | 顶点在邻接矩阵中对应行/列中表示边存在的元素个数 |
入度(有向图) | 顶点在邻接矩阵中对应列中表示边存在的元素个数 |
出度(有向图) | 顶点在邻接矩阵中对应行中表示边存在的元素个数 |
注:邻接举证法求顶点的度/入度/出度的时间复杂度为 O ( ∣ v ∣ ) O(|v|) O(∣v∣)
(3)对称矩阵的压缩存储
策略:用一维数组存储主对角线和上(下)三角区元素
公式:i代表矩阵的行(
i
>
=
1
i>=1
i>=1),j代表矩阵的列(
j
>
=
1
j>=1
j>=1),k代表数组下标(
k
>
=
0
k>=0
k>=0)
k = { i ( i − 1 ) 2 + j − 1 , i > = j j ( j − 1 ) 2 + i − 1 , j > = i k = \begin{cases} \frac{i(i-1)}{2}+j-1, & \text{$i>=j$} \\ \frac{j(j-1)}{2}+i-1, & \text{$j>=i$} \\ \end{cases} k={2i(i−1)+j−1,2j(j−1)+i−1,i>=jj>=i
(4)邻接矩阵法的性质
设图G的邻接矩阵为A(矩阵元素为0或1),则
A
n
A^n
An的元素
A
n
[
i
]
[
j
]
A^n[i][j]
An[i][j]等于由顶点i到顶点j的长度为n的路径数目
2.邻接表法
(1)邻接表法定义
通过链表的方式存储每个顶点所连接的边和相应的顶点。对于图中的每个顶点,邻接表都为其创建一个链表,链表中存储了与该顶点相邻的其他顶点。表示方式不唯一
// 边
typedef struct EdgeNode{
int vertexIndex;// 指向邻接表中哪个结点
struct EdgeNode *next;// 指向下一条边的指针
}EdgeNode;
// 顶点
typedef struct vertexNode{
VertexType data;// 顶点信息
EdgeNode* first;// 指向第一条边的指针
}AdjacencyList[maxVertexNum];
// 邻接表存储的图
typedef struct{
AdjacencyList vertexs;
int vertexNum,edgeNum;
}AdjacencyGraph;
无向图中邻接表法的空间复杂度为 O ( ∣ V ∣ + 2 ∣ E ∣ ) O(|V|+2|E|) O(∣V∣+2∣E∣),有向图中邻接表法的空间复杂度为 O ( ∣ V ∣ + ∣ E ∣ ) O(|V|+|E|) O(∣V∣+∣E∣)
(2)计算顶点的度、入度、出度
类型 | 计算方式 |
---|---|
度(无向图) | 顶点的边链表的结点数目 |
入度(有向图) | 遍历每个顶点的边链表,计算出指向该结点的边结点之和 |
出度(有向图) | 顶点的边链表的结点数目 |