邻接矩阵法和邻接表法(图的存储)

1.邻接矩阵法

(1)邻接矩阵法定义
通过一个二维矩阵来表示图中各个顶点之间的连接关系。邻接矩阵中的行和列分别代表图中的顶点,而矩阵中的元素则表示对应顶点之间是否存在边。表示方式唯一

typedef struct{
	ElementType vertex[maxVertexNum];// 顶点表
	ElementType edge[maxVertexNum][maxVertexNum];// 邻接矩阵(边表)
	int vertexNum,edgeNum;// 顶点数,边数
}adjacencyMatrix;

邻接矩阵法的空间复杂度为 O ( ∣ v ∣ 2 ) O(|v|^2) O(v2) ,适合用于稠密图。无向图的邻接矩阵是对称矩阵,可压缩存储

(2)计算顶点的度、入度、出度

类型计算方式
度(无向图)顶点在邻接矩阵中对应行/列中表示边存在的元素个数
入度(有向图)顶点在邻接矩阵中对应列中表示边存在的元素个数
出度(有向图)顶点在邻接矩阵中对应行中表示边存在的元素个数

注:邻接举证法求顶点的度/入度/出度的时间复杂度为 O ( ∣ v ∣ ) O(|v|) O(v)

(3)对称矩阵的压缩存储
策略:用一维数组存储主对角线和上(下)三角区元素
公式:i代表矩阵的行( i > = 1 i>=1 i>=1),j代表矩阵的列( j > = 1 j>=1 j>=1),k代表数组下标( k > = 0 k>=0 k>=0

k = { i ( i − 1 ) 2 + j − 1 , i > = j j ( j − 1 ) 2 + i − 1 , j > = i k = \begin{cases} \frac{i(i-1)}{2}+j-1, & \text{$i>=j$} \\ \frac{j(j-1)}{2}+i-1, & \text{$j>=i$} \\ \end{cases} k={2i(i1)+j1,2j(j1)+i1,i>=jj>=i

(4)邻接矩阵法的性质
设图G的邻接矩阵为A(矩阵元素为0或1),则 A n A^n An的元素 A n [ i ] [ j ] A^n[i][j] An[i][j]等于由顶点i到顶点j的长度为n的路径数目

2.邻接表法

(1)邻接表法定义
通过链表的方式存储每个顶点所连接的边和相应的顶点。对于图中的每个顶点,邻接表都为其创建一个链表,链表中存储了与该顶点相邻的其他顶点。表示方式不唯一

// 边
typedef struct EdgeNode{
	int vertexIndex;// 指向邻接表中哪个结点
	struct EdgeNode *next;// 指向下一条边的指针
}EdgeNode;
// 顶点
typedef struct vertexNode{
	VertexType data;// 顶点信息
	EdgeNode* first;// 指向第一条边的指针
}AdjacencyList[maxVertexNum];
// 邻接表存储的图
typedef struct{
	AdjacencyList vertexs;
	int vertexNum,edgeNum;
}AdjacencyGraph;

无向图中邻接表法的空间复杂度为 O ( ∣ V ∣ + 2 ∣ E ∣ ) O(|V|+2|E|) O(V+2∣E),有向图中邻接表法的空间复杂度为 O ( ∣ V ∣ + ∣ E ∣ ) O(|V|+|E|) O(V+E)

(2)计算顶点的度、入度、出度

类型计算方式
度(无向图)顶点的边链表的结点数目
入度(有向图)遍历每个顶点的边链表,计算出指向该结点的边结点之和
出度(有向图)顶点的边链表的结点数目
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码届艺术家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值