Lynnzxl
码龄7年
关注
提问 私信
  • 博客:50,566
    动态:11
    50,577
    总访问量
  • 33
    原创
  • 1,070,902
    排名
  • 43
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2018-04-11
博客简介:

Lynnzxl的博客

查看详细资料
个人成就
  • 获得15次点赞
  • 内容获得13次评论
  • 获得107次收藏
创作历程
  • 1篇
    2022年
  • 3篇
    2021年
  • 30篇
    2020年
成就勋章
TA的专栏
  • 数据分析
    3篇
  • 推荐系统
    12篇
兴趣领域 设置
  • 人工智能
    数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

183人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

impala字符串函数总结

json字符串函数使用 get_json_object 来解析 JSON 字段,获取各个属性的值。1、 解析单个 json 字符串select get_json_object('{"a":"123", "b": "456"}', '$.a')-- 123select get_json_object('{"a":"123", "b": "456"}', '$.b')-- 4562、解析多个 json 字符串列表select get_json_object('[{"a":"123", "b"
转载
发布博客 2022.02.22 ·
1587 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

MySQL-函数使用记录——窗口函数&JSON字符串

MySQL-窗口函数1. row_number()解释:row_number函数,按照指定的字段分组、排序,并对每组中的数据进行排序编号;参数:row_number() over(partition by 分组字段 order by 排序字段)例子: 每个学生的各科成绩按照分数倒序排列并标记序号: select student_id ,student_name,subject_name, score , row_number() over(partition by st
原创
发布博客 2021.06.19 ·
258 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Excel学习笔记02——数据录入之序号录入&规范数据源之数据验证

序号录入的几种方法:1、连续的序号选中现有单元格,向下拖拽开始-填充-序列,设置序号选项2、自动增减的序号row()函数,减去前面的行数可自动调整序号3、合并单元格的序号使用counta()函数counta()函数:统计非空单元格的数量counta(标题单元格:上一单元格)4、自定义向下拖拽汉字一、二、三……,支持向下拖拽英文A、B、C、D……不支持向下拖拽,需要自定义序列:文件-选项-高级-编辑自定义序列,编辑自定义序列,可手动填写,可选择数据表中的序列;数据
原创
发布博客 2021.06.01 ·
1521 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Excel学习笔记01——学习Excel的两种思路

按照Excel知识点,学习Excel1. 小技巧2. 函数公式3. 透视表4. 条件格式5. 图表按照数据分析流程,学习Excel1. 数据录入2. 数据整理3. 数据统计4. 数据可视化快捷键汇总:快捷键功能Alt + =快速求和Alt + F1快速创建图表...
原创
发布博客 2021.06.01 ·
358 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

推荐系统学习笔记——十二、结巴分词用于内容相似推荐

十二、结巴分词用于内容相似推荐计算物品最相似的其他物品,直接用于I2I相似推荐,或者U2I2I推荐以文章为例,进行内容相似推荐,一般需要以下几个步骤:内容获取一般包含ID、标题、介绍、详情等,存储于MySQL数据库中。批量查取这些内容,进行下一步中文分词:提取关键词中文没有空格进行分词,所以需要手动分词,使用TFIDF技术,jieba分词结巴分词,中文分词组件,三种模式:全模...
原创
发布博客 2020.04.03 ·
669 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

推荐系统学习笔记——十一、推荐系统解决物品冷启动问题

十一、推荐系统解决物品冷启动问题物品冷启动:新加入系统的物品,因缺少行为数据而无法被扩散推荐;推荐系统解决物品冷启动的两种思路:基于内容的推荐算法使用内容本身的信息方法1:物品相似U2I2I基于协同过滤的推荐算法使用群体行为数据方法2:抖音的多级流量池算法方法1:基于物品相似算法的U2I2I类似功能:看了还看、相关推荐eg:根据商品列表中各个物品的内容属性,...
原创
发布博客 2020.04.02 ·
774 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

推荐系统学习笔记——十、推荐系统API服务接口

十、推荐系统API服务接口
原创
发布博客 2020.04.02 ·
1990 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

推荐系统学习笔记——九、推荐系统实现用户聚类推荐

九、推荐系统实现用户聚类推荐聚类分析(Cluster analysis),亦称为群集分析,是一种数据点分组的机器学习技术。给定一组数据点,可以用聚类算法将每个数据点分到特定的组中推荐思路:将用户进行聚类,给每个聚类推荐该类人群喜欢的内容实现用户聚类推荐的技术流程:几个步骤:用户聚类 → 分群热榜统计 → 计算结果缓存 → 在线服务前两步的结果都会存入到高速缓存,然后在线服务使用缓存...
原创
发布博客 2020.04.01 ·
3712 阅读 ·
2 点赞 ·
7 评论 ·
13 收藏

推荐系统学习笔记——八、推荐系统多路召回融合排序

八、推荐系统多路召回融合排序多路召回与融合排序多路召回推荐服务一般有多个环节(召回、粗排序、精排序),一般会使用多个召回策略,互相弥补不足,效果更好。比如说:实时召回- U2I2I,几秒之内根据行为更新推荐列表。用U2I得到你实时的行为对象列表,再根据I2I得到可能喜欢的其他的物品这个是实时召回,剩下3个是提前算好的基于内容 - U2Tag2I先算好用户的偏好tag,然...
原创
发布博客 2020.04.01 ·
4941 阅读 ·
4 点赞 ·
0 评论 ·
16 收藏

推荐系统学习笔记——七、怎样实现协同过滤推荐系统

七、怎样实现协同过滤推荐系统推荐系统分类:基于协同过滤的推荐系统(Collaborative Filtering):使用用户和物品的行为基于数据统计(记忆)的CF,使用方法:Neighborhood-Based,近邻搜索基于模型(参数学习)的CF,是参数学习最优化的,使用方法:Model-based基于内容的推荐系统(Content-Based):使用用户和物品的信息混合推荐系...
原创
发布博客 2020.04.01 ·
612 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

推荐系统学习笔记——六、怎样实现基于内容的推荐系统

六、怎样实现基于内容的推荐系统基于内容的推荐系统(Content-Based Recommendations)地位:最早被使用的推荐算法,年代久远,但当今仍然被广泛使用,效果良好定义:给用户X推荐和之前喜欢过的物品相似的物品,即U2I2I,U2Tag2I基于内容的推荐系统,包含三个步骤:第一:找到一个特征来表达物品,比如说标签、分类、演员、关键词等;电影为例,蜘蛛侠打上动作...
原创
发布博客 2020.04.01 ·
649 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

推荐系统学习笔记——五、推荐系统通用技术架构

五、推荐系统通用技术架构一个大量借鉴Netflix架构的推进系统架构。其 数据流图 如下:数据源系统的数据源,主要有 三个:前端的打点日志,以Kafka流形式的数据物品内容数据:存储在MySQL中的业务的物品本身的内容数据,如id、标签、图片等等来自web系统的用户画像数据,存在Hbase,包含两类:用户自身的人口属性的数据,性别、年龄、职业根据用户历史行为,算出用户偏好的数...
原创
发布博客 2020.04.01 ·
1125 阅读 ·
1 点赞 ·
4 评论 ·
4 收藏

推荐系统学习笔记——四、Netfilx经典推荐系统架构

四、Netfilx经典推荐系统架构Netflix公司发布的经典推荐系统架构,一共分为3层:ONLINE(在线层)NEARLINE(近线层)OFFLINE(离线层)这三层分别做自己的事情,配合组合一起完成系统的运行。在线层:就是用户看到的层。 用户和产品(Client,就是电脑端、APP等等)进行交互,用户除了看到内容之外,还会有很多操作,比如说播放、评分、浏览点击、购买等等,这些...
原创
发布博客 2020.03.31 ·
1833 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

推荐系统学习笔记——三、推荐系统有哪些召回路径

三、推荐系统有哪些召回路径推荐系统中的i2i、u2i、u2i2i、u2u2i、u2tag2i,都是指推荐系统的召回路径。通过上图理解什么是召回路径:u、i、tag是指图中的节点2是指图中的线i2i:指从一个物品到达另外一个物品,item 到 item应用:头条,在下方列出相似的、相关的文章;算法:内容相似,eg:文章的相似,取标题的关键字,内容相似协同过滤关联规...
原创
发布博客 2020.03.31 ·
4546 阅读 ·
4 点赞 ·
1 评论 ·
16 收藏

推荐系统学习笔记——二、推荐系统包含哪些环节

二、推荐系统包含哪些环节挑战:怎样从海量的内容中,挑选出用户感兴趣的条目,并且满足系统50MS~300MS的低延迟要求?系统需要在50毫秒~300毫秒内进行返回:Netflix要求99%的请求在250毫秒内返回今日头条大概是200毫秒为了解决这个问题,业界会将推荐服务分为3个环节:召回、排序、调整1、**召回:**有两个主要的职责实现巨量的数据降低,比如说亿级别到万级别...
原创
发布博客 2020.03.31 ·
1110 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

推荐系统学习笔记——一、为什么学习推荐系统

一、为什么学习推荐系统1、为什么学习推荐系统薪资高拉勾网-推荐系统职位列表职位重要推荐系统的改进可以创造巨大收益,甚至决定企业的成败头条、抖音、快手,都是以推荐系统作为流量分发的主要手段淘宝、京东、亚马逊等商城,为你推荐、猜你喜欢、看了又看等据报道,推荐系统给亚马逊带来了35%的销售收入,给Netflix带来了高达75%的消费,并且Youtube主页上60%的浏览来自...
原创
发布博客 2020.03.31 ·
625 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

读《白话统计》笔记——第九章

第九章 置信区间估计——给估计留点余地置信区间(Confidence Interval)估计是用一个区间来估计参数值,字面意思也就是一定信心下的区间。eg:95%置信区间为(0.72,0.96),就意味着有95%的信心认为(0.72,0.96)这个区间包含了总体参数。9.1 置信区间的理论于实际含义95%置信区间:如果从一个总体中重复多次抽取不同的样本,对每一个样本都可以计算一个95%置信区...
原创
发布博客 2020.03.20 ·
3013 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

读《白话统计》笔记——第八章

第八章
原创
发布博客 2020.03.14 ·
437 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

读《白话统计》笔记——第七章

第七章 从“女士品茶”中领会的假设检验的思想7.1 女士品茶的故事故事:一个女士说冲泡奶茶先放茶和先放奶口味不一样,她能辨别出来。Fisher就提出做实验来验证。主要关注验证过程,需要考虑让这位女士辨别几杯奶茶才合理:一杯,猜中的概率是50%;两杯,猜中的概率是25%;三杯,猜中的概率是0.125;需要考虑多少杯都辨别对了,才能证明是她有能力辨别出来,而不是凭运气猜对的(这个概率很...
原创
发布博客 2020.03.13 ·
630 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏
加载更多