推荐系统学习笔记——九、推荐系统实现用户聚类推荐

本文介绍了推荐系统中的一种实现方式——用户聚类推荐。通过聚类分析技术,将用户分为不同的群体,利用群体特征进行内容推荐。过程包括用户聚类、分群热榜统计、计算结果缓存及在线服务等步骤。这种方法适用于新用户冷启动,但可能精度较低,不够个性化。
摘要由CSDN通过智能技术生成

九、推荐系统实现用户聚类推荐

聚类分析(Cluster analysis),亦称为群集分析,是一种数据点分组的机器学习技术。给定一组数据点,可以用聚类算法将每个数据点分到特定的组中

推荐思路:将用户进行聚类,给每个聚类推荐该类人群喜欢的内容

在这里插入图片描述

实现用户聚类推荐的技术流程:
在这里插入图片描述

几个步骤:
用户聚类 → 分群热榜统计 → 计算结果缓存 → 在线服务

前两步的结果都会存入到高速缓存,然后在线服务使用缓存进行推荐

用户聚类

  • 类别信息:性别、年龄、职业等等,
    • 特征处理:使用one-hot把类别信息变成0、1的值
  • 行为列表:播放、购买等等,
    • 特征处理:因为时变长的,所以使用embedding的技术,转变成一个定长的密集向量。embedding:把有序列表输出成定长向量,每一个向量的值是一个数字,这样不同人的行为列表就可以通过向量直接计算相似度。
  • 特征工程之后,把one-hot向量列表和embedd
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值