yolo

本文档详细介绍了如何使用YOLO进行自定义数据集的训练,包括从官网下载Yolo、使用LabelImg标注图片、创建darknet目录结构、下载预训练权重、运行voc_label.py进行数据转换、修改配置文件,最后进行训练和测试的全过程。
摘要由CSDN通过智能技术生成

1、在官网上下载yolo

https://pjreddie.com/darknet/yolo/

按提示操作即可

2、使用labelimg标注图片,保存为xml文件

https://cloud.tencent.com/developer/news/325876

labelimg的安装教程

3、在darknet中按以下目录创建文件夹

voc
–VOCdevkit
–—voc2018
–——Annotations
–——ImageSets
–———Main
–——JPEGImages
–——labels
Annotations中是所有的xml文件
JPEGImages中是所有的训练图片
图片文件和xml文件的名称最好匹配

Main中包含train.txt 和test.txt 分别为训练集和测试集的文件名称
注意!!!不需要写路径只需要写文件名称
文件名称的获得方式很多教程是用makeTxt.sh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值