YOLO训练自己的数据集

本文详细介绍了如何使用YOLOv2进行目标识别,从数据预处理、配置文件修改、模型训练到测试,提供了一整套流程。通过实践,作者解决了将图像分类转换为目标识别的问题,分享了训练自己数据集的经验。
摘要由CSDN通过智能技术生成

很高兴现在已经有几百人通过我的教程成功地使用YOLO处理自己的数据集。


最近一直在用CNN的模型做图像二分类,但苦于效果不佳,于是把图像分类问题转作目标识别问题。做目标识别选择了Yolo(you only look once),一个最近推出的方法,突出的优点就是速度快。查找了网上关于yolo的训练自己数据集的方法,大都存在一点问题,而且yolo不久前更新到version2版本。在自己的亲身试验后,将yolo的使用写成心得。

1.yolo
yolo的官网:https://pjreddie.com/darknet/yolo/
yolo的官网介绍了yolo的安装与测试。建议大家多看看英文官网,因为中文网更新的慢,而且有部分内容省略了。按照官网的步骤就不会有错。

2.数据的预处理
yolo的数据包括训练数据和验证数据(训练数据用来训练模型,验证数据用来调整模型)。训练数据和验证数据都包括:a.图片;b.标签。需要说明的是,如果采用VCC的话,标签需要特定xml格式,还要转化为txt。下面以我目标检测“猫”为例讲解。

评论 75
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值