SPSS Modeler18.0数据挖掘软件教程(七):关联分析-Apriori

教程传送门:
SPSS Modeler18.0数据挖掘软件教程(一):背景及软件简介
SPSS Modeler18.0数据挖掘软件教程(二):数据描述性统计与可视化
SPSS Modeler18.0数据挖掘软件教程(三):逻辑回归分析
SPSS Modeler18.0数据挖掘软件教程(四):分类分析-决策树
SPSS Modeler18.0数据挖掘软件教程(五):分类分析-KNN
SPSS Modeler18.0数据挖掘软件教程(六):聚类分析-K-means

1、数据介绍

本节教程中将利用SPSS Modeler18.0对数据进行关联分析,所用的数据集是自带的购物篮数据集《BASKETS1n》,目标是利用Apriori算法挖掘不同商品之间的关联关系。本教程所涉及的数据集我也整理了一份放在云盘,提取码: ktyb,需要的朋友可以直接下载。《BASKETS1n》 数据结构如下:
在这里插入图片描述
每条记录代表一个用户的购物篮,T表示购买,F表示没有购买。

2、操作步骤

在SPSS Modeler18.0构建区中构建如下关联关系模型:
在这里插入图片描述
详细操作步骤如下:
在【源】节点中选择【变量文件】源数据。
在这里插入图片描述
连接到【字段选项】节点中的【类型】节点,并将每个变量的测量属性设置好,指定每个变量的角色。本例中的将项目的角色设置成任意。

在这里插入图片描述
通过过滤器对不需要的字段进行过滤:
在这里插入图片描述
对于不同项目之间的共现关系大小,可以利用【图形】中的【网络图】进行可视化。
在这里插入图片描述
在网络图中需要设置作为字段的项目,并购选【仅显示true值标志】,显示共同购买,点击运行,得到如下网络图:
在这里插入图片描述

将【建模】中的【Apriori】字段拖入构建区,连接过滤器。在【模型】选项卡中设置好【最低条件支持度】与【最小规则置信度】,并勾选【仅包含标志变量的true值】。
在这里插入图片描述
点击运行得到模型结果,双击结果查看关联分析结果。
在这里插入图片描述
在下来菜单中可以选择不同指标。
在这里插入图片描述

3、小结

本节教程中,主要讲解了利用SPSS Modeler18.0对购物篮数据进行了关联分析,详细阐述了从数据导入到模型参数设置的步骤,并对输出结果进行简要说明。

### 如何在SPSS中应用Apriori算法进行关联规则分析 #### 准备工作 确保已安装并配置好SPSS Modeler 18.0版本。该环境提供了内置的支持用于执行基于Apriori算法关联规则挖掘。 #### 导入数据集 启动SPSS Modeler后,在流编辑器界面导入待处理的数据文件。支持多种格式如CSV、Excel等,选择适合的方式加载交易记录或市场篮子数据分析所需的数据源[^3]。 #### 配置节点参数 - **Source Node**: 使用Table节点或其他适当类型的输入节点读取外部表格形式的数据。 - **Type Node (可选)**: 如果需要转换字段属性或者定义变量角色,则可以加入此节点调整设置。 - **Association Node**: - 设置`Minimum Support`(最小支持度),这决定了哪些项集被认为是频繁的; - 定义`Minimum Confidence`(最小置信度),用来过滤出满足条件的强大关联规则; - 可能还需要指定最大前件长度(Maximum Antecedent Length)和其他高级选项以优化性能和结果质量[^1]。 ```spss * Example of setting up an Association node in SPSS syntax. ASSOCIATION /VARIABLES=varlist /MIN_SUPPORT=value /MIN_CONFIDENCE=value; ``` #### 执行模型训练 连接上述各节点形成完整的流程图,并点击运行按钮让程序自动完成整个过程——从原始数据到提取特征直至最后生成关联规则列表。在此期间,系统会依据设定好的阈值筛选符合条件的结果集合[^2]。 #### 结果解释与可视化展示 一旦计算结束,即可查看输出窗口内的统计摘要表以及图形化表示法(例如网络图),这些都可用于直观理解各项之间存在的潜在联系及其强度大小。此外,还可以导出详细的报告文档供进一步研究讨论使用。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值