SPSS Modeler18.0数据挖掘软件教程(六):聚类分析-K-means

本教程详细介绍如何使用SPSSModeler18.0进行K-Means聚类分析,包括数据导入、模型参数设置、结果解读等关键步骤,以汽车销售数据为例,展示聚类分析的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

教程传送门:
SPSS Modeler18.0数据挖掘软件教程(一):背景及软件简介
SPSS Modeler18.0数据挖掘软件教程(二):数据描述性统计与可视化
SPSS Modeler18.0数据挖掘软件教程(三):逻辑回归分析
SPSS Modeler18.0数据挖掘软件教程(四):分类分析-决策树
SPSS Modeler18.0数据挖掘软件教程(五):分类分析-KNN

1、数据介绍

本节教程中将利用SPSS Modeler18.0对数据进行聚类分析,所用数据集为自带汽车销售数据集《car_sales.xlsx》,目标是根据每款汽车在不同属性上的值,对各个汽车进行聚类。本教程所涉及的数据集我也整理了一份放在云盘,提取码: ktyb,需要的朋友可以直接下载。《car_sales.xlsx》 数据结构如下:
在这里插入图片描述
接下来需要根据每款汽车的type、price、engine_s、horsepow等指标上的值对汽车进行聚类。

2、操作步骤

利用SPSS Modeler18.0针对《car_sales.xlsx》数据建立如下K-Means聚类模型进行聚类分析:
在这里插入图片描述
具体步骤如下:
在【源】节点中选择【Excel】数据源,导入数据源。
在这里插入图片描述将【输出】节点中的【数据审核】节点拖入构建区,点击【运行】对数据进行审核。
在这里插入图片描述
将【字段选项】中的【类型】节点拖入构建区与数据源进行连接,对各字段的测量值、角色进行设置。
在这里插入图片描述将【建模】中的【K-Means】模型节点拖入构建区与【类型】节点相连。
在这里插入图片描述
在【字段】选项卡中选择使用预定义角色,在【模型】选项卡中设置好【聚类数】。

在这里插入图片描述
点击【运行】,得到K-Means模型运行结果,双击结果查看模型结果。在【模型】选项卡下,通过左边的模型概要,看到一共使用了十个输入变量,最后划分成4个聚类群,聚类质量为良好。通过右边的聚类大小,看到聚类结果每个类的分布情况。
在这里插入图片描述
在右边查看中下拉选择【预测变量的重要性】,看到不同自变量重要性情况如下:
在这里插入图片描述
左边查看下拉选择【聚类】,右边查看下拉选择【单元格分布】,在左边可以看到不同类别在不同属性上的均值,右边可以看到某个具体属性在某个类的分布情况。
在这里插入图片描述
当在左边选中某个类别的整个一列时,右边则会显示【聚类比较】的图。

在这里插入图片描述
在左边按住ctrl同时选中多个类别的话,右边则会对不同类进行比较,方便查找差异。
在这里插入图片描述
对于K-Means输出的结果,可以利用表格查看。将【输出】中的【表格】拖入构建区,连接到K-means输出结果中,点击运行查看结果。
在这里插入图片描述
对于不同聚类结果之间的对比也可以借助【记录】选项中的【汇总】节点分类汇总得到不同类的均值。

在这里插入图片描述
在汇总后,选择【图行】中的【图形板】,选中每个均值,绘制平行图。在平行图的详细选项卡中,,将【色彩】选为聚类类别。
在这里插入图片描述
点击运行后,得到各个类,在每个指标上的均值,便于比较。
在这里插入图片描述

3、小结

本节教程中,主要讲解了利用SPSS Modeler18.0进行K-Means聚类分析,详细阐述了从数据导入到模型参数设置的步骤,并对K-Means输出结果进行了详细解释。

为了深入掌握如何在IBM SPSS Modeler 18.0专业版中构建数据挖掘模型并部署至服务器,推荐参考《IBM SPSS Modeler 数据挖掘使用指南》。这份资源将帮助你理解并操作从数据预处理到模型部署的整个流程。 参考资源链接:[IBM SPSS Modeler 数据挖掘使用指南](https://wenku.csdn.net/doc/527qk1fafs?spm=1055.2569.3001.10343) 首先,你需要确定分析目标和收集相关数据。在IBM SPSS Modeler中,通过拖放的方式开始构建数据流,连接不同的数据源和转换节点以清洗和准备数据。这一过程可能涉及节点如“Type”、“Select”、“Derive”和“Recode”等,用于转换数据类型、选择关键字段、派生新变量和重编码字段值。 数据准备完毕后,继续添加建模节点,如“C5.0”、“CHAID”或“K-Means”等,这些节点分别对应决策树、分类树或聚类算法。在这些节点中,你可以调整模型参数以优化性能。 模型构建完成后,使用“Evaluation”节点对模型进行评估,选择适合的评估方法,如混淆矩阵、提升图等,以确保模型的预测准确性和稳定性。 接下来,利用IBM SPSS Modeler Server进行模型的部署。首先,将数据流导出为模型文件,然后在Modeler Server中创建部署服务。根据业务需求选择实时或批量预测服务,配置好预测输入和输出参数。 最后,通过Modeler Server Administration Console管理部署的服务,监控预测性能,确保模型按预期运行,并根据反馈进行调整和优化。 通过以上步骤,你可以在IBM SPSS Modeler 18.0专业版中有效地构建数据挖掘模型,并成功地部署到服务器上以支持实时预测。更多关于模型部署和服务器管理的高级技巧和最佳实践,可以在《IBM SPSS Modeler 数据挖掘使用指南》中找到。这份全面的指南将帮助你进一步提高数据挖掘能力,为业务决策提供坚实的数据支持。 参考资源链接:[IBM SPSS Modeler 数据挖掘使用指南](https://wenku.csdn.net/doc/527qk1fafs?spm=1055.2569.3001.10343)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值