SPSS Modeler18.0数据挖掘软件教程(六):聚类分析-K-means

本教程详细介绍如何使用SPSSModeler18.0进行K-Means聚类分析,包括数据导入、模型参数设置、结果解读等关键步骤,以汽车销售数据为例,展示聚类分析的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

教程传送门:
SPSS Modeler18.0数据挖掘软件教程(一):背景及软件简介
SPSS Modeler18.0数据挖掘软件教程(二):数据描述性统计与可视化
SPSS Modeler18.0数据挖掘软件教程(三):逻辑回归分析
SPSS Modeler18.0数据挖掘软件教程(四):分类分析-决策树
SPSS Modeler18.0数据挖掘软件教程(五):分类分析-KNN

1、数据介绍

本节教程中将利用SPSS Modeler18.0对数据进行聚类分析,所用数据集为自带汽车销售数据集《car_sales.xlsx》,目标是根据每款汽车在不同属性上的值,对各个汽车进行聚类。本教程所涉及的数据集我也整理了一份放在云盘,提取码: ktyb,需要的朋友可以直接下载。《car_sales.xlsx》 数据结构如下:
在这里插入图片描述
接下来需要根据每款汽车的type、price、engine_s、horsepow等指标上的值对汽车进行聚类。

2、操作步骤

利用SPSS Modeler18.0针对《car_sales.xlsx》数据建立如下K-Means聚类模型进行聚类分析:
在这里插入图片描述
具体步骤如下:
在【源】节点中选择【Excel】数据源,导入数据源。
在这里插入图片描述将【输出】节点中的【数据审核】节点拖入构建区,点击【运行】对数据进行审核。
在这里插入图片描述
将【字段选项】中的【类型】节点拖入构建区与数据源进行连接,对各字段的测量值、角色进行设置。
在这里插入图片描述将【建模】中的【K-Means】模型节点拖入构建区与【类型】节点相连。
在这里插入图片描述
在【字段】选项卡中选择使用预定义角色,在【模型】选项卡中设置好【聚类数】。

在这里插入图片描述
点击【运行】,得到K-Means模型运行结果,双击结果查看模型结果。在【模型】选项卡下,通过左边的模型概要,看到一共使用了十个输入变量,最后划分成4个聚类群,聚类质量为良好。通过右边的聚类大小,看到聚类结果每个类的分布情况。
在这里插入图片描述
在右边查看中下拉选择【预测变量的重要性】,看到不同自变量重要性情况如下:
在这里插入图片描述
左边查看下拉选择【聚类】,右边查看下拉选择【单元格分布】,在左边可以看到不同类别在不同属性上的均值,右边可以看到某个具体属性在某个类的分布情况。
在这里插入图片描述
当在左边选中某个类别的整个一列时,右边则会显示【聚类比较】的图。

在这里插入图片描述
在左边按住ctrl同时选中多个类别的话,右边则会对不同类进行比较,方便查找差异。
在这里插入图片描述
对于K-Means输出的结果,可以利用表格查看。将【输出】中的【表格】拖入构建区,连接到K-means输出结果中,点击运行查看结果。
在这里插入图片描述
对于不同聚类结果之间的对比也可以借助【记录】选项中的【汇总】节点分类汇总得到不同类的均值。

在这里插入图片描述
在汇总后,选择【图行】中的【图形板】,选中每个均值,绘制平行图。在平行图的详细选项卡中,,将【色彩】选为聚类类别。
在这里插入图片描述
点击运行后,得到各个类,在每个指标上的均值,便于比较。
在这里插入图片描述

3、小结

本节教程中,主要讲解了利用SPSS Modeler18.0进行K-Means聚类分析,详细阐述了从数据导入到模型参数设置的步骤,并对K-Means输出结果进行了详细解释。

### 回答1: SPSS Modeler是一款数据挖掘和预测分析软件,其聚类分析功能可以将数据集中的个体按照相似程度划分为若干个群体,这个过程就是聚类分析聚类分析可以帮助我们理解数据集中数据之间的关系,可以帮助我们进行个性化的营销、客户分类等应用。 ### 回答2: SPSS Modeler聚类分析是一种常见的数据挖掘技术,主要用于将数据集中的对象划分成可区分的组或类别。这些组被称为聚类或群集,每个群集包括具有相似特征的相似对象。SPSS Modeler聚类分析通过发现数据集中的内在模式和结构来揭示隐含关系,使用户更好地理解数据。下面将详细解释SPSS Modeler聚类分析的相关概念和步骤: 1. 聚类的基本概念 SPSS Modeler聚类分析是一种非监督学习方法,没有预定义的标签或目标变量。聚类分析主要基于距离或相似性来度量对象之间的相似度。数据集中的对象可以是任何类型的实体,例如顾客、产品、市场、地理位置等。聚类的目标是使得同一聚类内的对象相似度尽可能大,不同聚类间的对象相似度尽可能小。聚类分析通常分为两种类型:层次聚类和k-means聚类。 2. SPSS Modeler聚类分析步骤 SPSS Modeler聚类分析的主要步骤包括数据准备、建立模型、聚类算法、解释和验证。具体步骤如下: (1)数据准备:数据准备是任何分析过程的关键步骤。在聚类分析中,首先需要对数据进行清洗和预处理,包括缺失值处理、异常值处理和数据标准化等。 (2)建立模型:SPSS Modeler提供了一个直观的界面来构建聚类分析模型。用户需要定义输入变量(即要聚类的数据),将它们传递到聚类节点,然后链接结果节点以查看聚类结果。 (3)聚类算法:SPSS Modeler提供了多个聚类算法,包括K-Means、层次聚类和模糊聚类算法,用户可以根据自己的需求选择合适的算法。例如,k-means聚类可用于聚类相对简单的数据,而层次聚类适用于处理具有更复杂结构的数据。 (4)解释:解释聚类分析的结果对于理解数据的整体特征非常重要。SPSS Modeler提供了多种工具来帮助解释聚类结果,例如聚类中心、类别间距离和特征贡献度等。 (5)验证:SPSS Modeler聚类分析的结果需要进行验证。用户可以使用交叉验证或保留数据集来验证模型的准确性和可靠性。 总之,SPSS Modeler聚类分析是一种非常有用的技术,能够帮助用户更好地理解和利用数据集。用户需要根据自己的需求和数据结构来选择合适的聚类方法和参数,并仔细解释和验证聚类结果。 ### 回答3: SPSS Modeler是IBM公司开发的一款数据挖掘与分析软件,提供了丰富的分析和建模工具,包括聚类分析聚类分析是一种常用的无监督学习方法,可以将数据集中相似的样本归为一类,这些类别之间具有较大的差异性,有助于发现数据中的潜在规律和获得有价值的信息。 SPSS Modeler中的聚类分析方法主要包括k-means聚类、层次聚类、直接密度聚类和谱聚类等多种算法。其中,k-means聚类是应用最广泛的算法之一。K-means聚类通过计算数据成员之间的距离,将同类的数据聚在一起。K代表聚类的数量,可以根据需要进行设置。 层次聚类是将数据分层次进行聚类,将较小的单元组合成较大的单元,直到单元能够被分为K个簇为止。该算法的主要优点是可以在聚类过程中避免对簇数量的预设。 直接密度聚类算法是根据密度的概念进行聚类,它能够识别任意形状的数据簇,不需要假设数据分布的参数性质。 谱聚类算法是通过对数据集进行谱分解,把数据转化成特征向量,再采用K-means聚类算法实现对数据的分类。 在SPSS Modeler中,使用聚类分析的主要步骤是首先准备数据,确定变量的类型和测量水平,筛选出需要聚类的变量。然后选择合适的聚类算法,进行模型创建。模型建立后可以对聚类结果进行分析和解释,如给出每个簇的特征描述、检查聚类结果的稳定性等。 聚类分析可广泛应用于市场分析、知识管理、细分客户等领域,它可以帮助人们从大量的数据中挖掘出优异的信息,提升决策的准确性和效率。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值