红黑树的插入过程(图解)

红黑树是一种自平衡的二叉查找树

它具有以下5个性质:

1、节点颜色必须是红色或者黑色

2、根节点是黑色

3、每个叶子节点(NIL节点、空节点)是黑色的

4、每个红色节点的两个子节点都是黑色

5、从任一节点到每个叶子的所有路径都包含数目相同的黑色节点


上图就是一颗红黑树,所有的空节点都指向最后这个黑色节点,称它为哨兵节点,从根节点沿任一路径出发到达哨兵节点,路径上的黑色节点总数是相同的。

了解完红黑树的基本性质,我们就开始插入数据,为了防止违反性质5,所以我们插入的数据都是为红色。

假设我们插入这些数据:12   23    34   40  45   67    78   89   90  100  110  120   130   140  

1、插入12,12为根节点,根节点一定为黑;插入23,符合红黑树的基本性质,无需做出调整


2、插入45


不满足红色节点一定有两个黑色子节点,对12 节点左旋,23变成根,颜色变为黑色,12原来为黑色,旋转后这条路径多了一个黑色节点,所以为了满足性质5,必须将其颜色换为红色。

3、插入34


插入34,不满足红色节点一定有两个黑色子节点,所以将34的父节点和叔叔节点 涂成 黑色,祖父节点变成红色,但23是根,必须为黑色,所以如上图所示 23,12,45节点颜色为黑色

4、插入40


插入数据情况基本就是这样,总结一下:

1、如果插入的节点,父节点为,叔叔节点(插入节点的父节点的兄弟节点)为,那么 就要把父节点和叔叔节点涂成,祖父节点涂成(但如果是根节点涂成黑色)。

2、如果插入的节点,父节点为,父节点是祖父节点的右支,叔叔节点为,且

           (1)要插入的节点为父节点的右支,那么对其 祖父节点左旋。就相当于:


           (2)要插入的节点为父节点的左支,那么 对父节点先右旋,然后按照旋转后的位置重新进行规则判断,接着对其祖父节点进行左旋。

3、如果插入的节点,父节点为,父节点是祖父节点的左支,叔叔节点为,且

      (1)要插入的节点为父节点的左支,那么对其 祖父节点右旋。

      (2)要插入的节点为父节点的右支,那么 对父节点先左旋,然后按照旋转后的位置重新进行规则判断,接着对其祖父节点进行右旋。即:上图的插入40数据。(相当于如果是<,那么先左后右,如果是>,那么先右后左)



展开阅读全文
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值