题目链接
http://codeforces.com/contest/723/problem/E
思路
首先基于下面两个事实:
1. 连通图度数为奇数的点一定为偶数个(每条边都能贡献2个度数,因此总度数一定为偶数,从而度数为奇数的点一定为偶数个)
2. Euler回路中所有点的入度都等于出度
这道题要求的就是所有边定向后入度等于出度的点,由此想到可以跑Euler回路,因为原图中存在度数为奇数的点,可以新建一个节点n + 1连接这些点,所有点的度数变成偶数(也可以由性质1,将所有奇数度数点相连),在跑欧拉回路的时候对所有边定向即可
细节
因为要删掉已经跑过的边,于是用set来存边
代码
#include <iostream>
#include <cstring>
#include <stack>
#include <vector>
#include <set>
#include <map>
#include <cmath>
#include <queue>
#include <sstream>
#include <iomanip>
#include <fstream>
#include <cstdio>
#include <cstdlib>
#include <climits>
#include <deque>
#include <bitset>
#include <algorithm>
using namespace std;
#define PI acos(-1.0)
#define LL long long
#define PII pair<int, int>
#define PLL pair<LL, LL>
#define mp make_pair
#define IN freopen("in.txt", "r", stdin)
#define OUT freopen("out.txt", "wb", stdout)
#define scan(x) scanf("%d", &x)
#define scan2(x, y) scanf("%d%d", &x, &y)
#define scan3(x, y, z) scanf("%d%d%d", &x, &y, &z)
#define sqr(x) (x) * (x)
const int maxn = 205;
set<int> s[maxn];
vector<PII> ans;
int n, m;
void init() {
for (int i = 0; i < maxn; i++) s[i].clear();
ans.clear();
}
void dfs(int u) {
set<int>::iterator it = s[u].begin();
while (s[u].size()) {
int v = *s[u].begin();
s[u].erase(v); s[v].erase(u);
ans.push_back(mp(u, v));
dfs(v);
}
}
int main() {
int T;
scan(T);
while (T--) {
init();
scan2(n, m);
for (int i = 0; i < m; i++) {
int u, v;
scan2(u, v);
s[u].insert(v); s[v].insert(u);
}
for (int i = 1; i <= n; i++) {
if (s[i].size() & 1)
s[n + 1].insert(i), s[i].insert(n + 1);
}
printf("%d\n", n - s[n + 1].size());
for (int i = 1; i <= n; i++) dfs(i);
for (int i = 0; i < ans.size(); i++) {
PII t = ans[i];
if (t.first == n + 1 || t.second == n + 1) continue;
printf("%d %d\n", t.first, t.second);
}
}
return 0;
}