题意
给一个矩阵,每次给出一个(row1, col1, row2, col2),询问以(row1, col1)为左上角,(row2, col2)为右下角围成的矩形面积。
思路
维护一个数组s[i, j]表示:以(0, 0)为左上角,(i, j)为右下角围成的矩形面积。
那么我们的结果
Q(row1,col1,row2,col2)=S[i,j]−S[i−1,j]−S[i,j−1]+S[i,j]
。
所以,我们在构造函数的时候把S[i, j]算出来,以后的询问都可以
O(1)
的返回结果了。
S[i, j]的递推关系:
S[i,j]=S[i−1,j]+IR[i,j]
。
其中,我们的IR[i, j]表示的是:第i行第0个元素到第j个元素的和,即前缀和。
IR[i, j]的递推关系:
IR[i,j]=IR[i,j−1]+matrix[i,j]
。
代码
const int maxn = 1005;
class NumMatrix {
public:
int S[maxn][maxn], IR[maxn][maxn], IC[maxn][maxn];
bool flag = false;
NumMatrix(vector<vector<int>> matrix) {
int m = matrix.size();
if (m == 0) flag = true;
else {
int n = matrix[0].size();
for (int i = 0; i < m; i++) IR[i][0] = matrix[i][0];
for (int i = 0; i < m; i++) {
for (int j = 1; j < n; j++)
IR[i][j] = IR[i][j - 1] + matrix[i][j];
}
S[0][0] = matrix[0][0];
for (int j = 1; j < n; j++) S[0][j] = S[0][j - 1] + matrix[0][j];
for (int i = 1; i < m; i++) {
for (int j = 0; j < n; j++)
S[i][j] = S[i - 1][j] + IR[i][j];
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
if (flag) return 0;
int Q = S[row2][col2];
if (col1 - 1 >= 0) Q -= S[row2][col1 - 1];
if (row1 - 1 >= 0) Q -= S[row1 - 1][col2];
if (row1 - 1 >= 0 && col1 - 1 >= 0) Q += S[row1 - 1][col1 - 1];
return Q;
}
};
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix obj = new NumMatrix(matrix);
* int param_1 = obj.sumRegion(row1,col1,row2,col2);
*/