Leetcode 304 - ange Sum Query 2D - Immutable(dp)

66 篇文章 0 订阅

题意

给一个矩阵,每次给出一个(row1, col1, row2, col2),询问以(row1, col1)为左上角,(row2, col2)为右下角围成的矩形面积。

思路

维护一个数组s[i, j]表示:以(0, 0)为左上角,(i, j)为右下角围成的矩形面积。
那么我们的结果 Q(row1,col1,row2,col2)=S[i,j]S[i1,j]S[i,j1]+S[i,j]

所以,我们在构造函数的时候把S[i, j]算出来,以后的询问都可以 O(1) 的返回结果了。
S[i, j]的递推关系 S[i,j]=S[i1,j]+IR[i,j]
其中,我们的IR[i, j]表示的是:第i行第0个元素到第j个元素的和,即前缀和。
IR[i, j]的递推关系 IR[i,j]=IR[i,j1]+matrix[i,j]

代码

const int maxn = 1005;

class NumMatrix {
public:
    int S[maxn][maxn], IR[maxn][maxn], IC[maxn][maxn];
    bool flag = false;
    NumMatrix(vector<vector<int>> matrix) {
        int m = matrix.size();
        if (m == 0) flag = true;
        else {
            int n = matrix[0].size();
            for (int i = 0; i < m; i++) IR[i][0] = matrix[i][0];
            for (int i = 0; i < m; i++) {
                for (int j = 1; j < n; j++) 
                    IR[i][j] = IR[i][j - 1] + matrix[i][j];
            }
            S[0][0] = matrix[0][0];
            for (int j = 1; j < n; j++) S[0][j] = S[0][j - 1] + matrix[0][j];
            for (int i = 1; i < m; i++) {
                for (int j = 0; j < n; j++)
                    S[i][j] = S[i - 1][j] + IR[i][j];
            }
        }
    }

    int sumRegion(int row1, int col1, int row2, int col2) {
        if (flag) return 0;
        int Q = S[row2][col2];
        if (col1 - 1 >= 0) Q -= S[row2][col1 - 1];
        if (row1 - 1 >= 0) Q -= S[row1 - 1][col2];
        if (row1 - 1 >= 0 && col1 - 1 >= 0) Q += S[row1 - 1][col1 - 1];
        return Q;
    }
};

/**
 * Your NumMatrix object will be instantiated and called as such:
 * NumMatrix obj = new NumMatrix(matrix);
 * int param_1 = obj.sumRegion(row1,col1,row2,col2);
 */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值