Leetcode 174 - Dungeon Game(二分+dp)

66 篇文章 0 订阅
27 篇文章 0 订阅

题意

一个2D迷宫,公主在(m, n)的位置,骑士在(0, 0)的位置,并且有一个初始生命值。

现在骑士要去(m, n)的位置,只能向右或者向上走。每个格子的位置上,都有BUFF和DEBUFF,现在要保持骑士在任何时刻的生命值都要大于0,求骑士的初始状态的最小生命值。

思路

算法1

二分+dp。这是一个比较直观的思路,我们二分一下骑士初始的生命值,然后dp去判断是否合法。

状态表示 d[i,j] ,在位置[i, j]上的生命值。

转移方程 d[i,j]=max(d[i,j1],d[i1,j])+a[i,j] 。且 d[i,j1] d[i1,j] 至少存在一个大于0。

目标状态 d[m,n]>0

算法2

直接dp。我们从(m, n)的位置开始倒推(0, 0)位置的最小生命值。

转移方程 d[i,j]=max(1,min(d[i+1,j],d[i,j+1])a[i,j])

代码

//algorithm 1
const int maxn = 1005;
#define INF 0x3e3e3e3e

class Solution {
public:
    int m, n;
    vector<vector<int>> a;
    int d[maxn][maxn];

    int dfs(int i, int j, int x) {
        if (d[i][j] != -1) return d[i][j];
        if (!i && !j) return d[i][j] = x + a[i][j];
        if (!i) return d[i][j] = dfs(i, j - 1, x) > 0 ? dfs(i, j - 1, x) + a[i][j] : -INF;
        if (!j) return d[i][j] = dfs(i - 1, j, x) > 0 ? dfs(i - 1, j, x) + a[i][j] : -INF;
        int t1 = dfs(i - 1, j, x);
        int t2 = dfs(i, j - 1, x);
        if (t1 > 0 || t2 > 0) d[i][j] = max(t1, t2) + a[i][j];
        else d[i][j] = -INF;
        return d[i][j];
    }

    bool judge(int x) {
        memset(d, -1, sizeof(d));
        return dfs(m - 1, n - 1, x) > 0;
    }

    int calculateMinimumHP(vector<vector<int>>& g) {
        a = g;
        m = a.size();
        if (!m) return 0;
        n = a[0].size();
        int L = 1, R = INT_MAX, M = L + (R - L) / 2;
        while (L < R) {
            if (R == L + 1) {
                if (judge(L)) M = L;
                else M = R;
                break;    
            } else {
                M = L + (R - L) / 2;
                if (judge(M)) R = M;
                else L = M;
            }
        }
        return M;
    }
};

//algorithm 2
const int maxn = 1005;
#define INF 0x3e3e3e3e

class Solution {
public:
    int d[maxn][maxn];

    int calculateMinimumHP(vector<vector<int>>& a) {
        int m = a.size();
        if (!m) return 0;
        int n = a[0].size();
        d[m - 1][n - 1] = a[m - 1][n - 1] > 0 ? 1 : -a[m - 1][n - 1] + 1;
        for (int i = m - 2; i >= 0; i--) d[i][n - 1] = max(1, d[i + 1][n - 1] - a[i][n - 1]);
        for (int j = n - 2; j >= 0; j--) d[m - 1][j] = max(1, d[m - 1][j + 1] - a[m - 1][j]);
        for (int i = m - 2; i >= 0; i--) {
            for (int j = n - 2; j >= 0; j--) {
                d[i][j] = max(1, min(d[i + 1][j], d[i][j + 1]) - a[i][j]);
            }
        }
        return d[0][0];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值