Leetcode 462 - Minimum Moves to Equal Array Elements II(中位数)

23 篇文章 0 订阅

题意

给一个数组,每次能够选择1个数增加1或者减小1,求最小的步数。

思路

即求一个数k,这个数距离所有数的距离绝对值之和最小,明显是中位数。

比较粗略的证明:
这里写图片描述
假设我们取y作为我们的数k,y在中位数mid的右边。现在的距离绝对值之和为ans1

既然y在中位数的右边,我们将y左移到x,那么,y的左边的m个数:每个数的距离绝对值减小y - x。y右边的n个数:每个数距离绝对值增加y - x,由于mid为中位数并且y在mid的右边,那么一定有 m>n ,于是减小的大于增加的。

同理可得y在中位数的左边向右移动距离绝对值之和也能继续减小。

所以k取中位数结果最小。

所以,我们只需要求出这个数组的中位数即可,可以排序后取中间的那个数,时间复杂度 O(nlogn) ,也可以求数组第k大, 时间复杂度 O(n)

求第n大void nth_element(Iterator begin, Iterator nth, Iterator last)

实现功能:

  1. 对数组进行划分排序,使第n个元素为数组第n大。
  2. n之前位置的元素都小于等于nums[n],n之后的元素都大于nums[n]。

代码

class Solution {
public:
    int minMoves2(vector<int>& nums) {
        nth_element(nums.begin(), nums.begin() + nums.size() / 2, nums.end());
        int x = nums[nums.size() / 2];
        int sum = 0;
        for (auto v : nums) sum += abs(x - v);
        return sum;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值