题意
给一个数组,每次能够选择1个数增加1或者减小1,求最小的步数。
思路
即求一个数k
,这个数距离所有数的距离绝对值之和最小,明显是中位数。
比较粗略的证明:
假设我们取y作为我们的数k
,y在中位数mid的右边。现在的距离绝对值之和为ans1
。
既然y在中位数的右边,我们将y左移到x,那么,y的左边的m个数:每个数的距离绝对值减小y - x
。y右边的n个数:每个数距离绝对值增加y - x
,由于mid
为中位数并且y在mid
的右边,那么一定有
m>n
,于是减小的大于增加的。
同理可得y在中位数的左边向右移动距离绝对值之和也能继续减小。
所以k取中位数结果最小。
所以,我们只需要求出这个数组的中位数即可,可以排序后取中间的那个数,时间复杂度 O(nlogn) ,也可以求数组第k大, 时间复杂度 O(n) 。
求第n大:void nth_element(Iterator begin, Iterator nth, Iterator last)
实现功能:
- 对数组进行划分排序,使第n个元素为数组第n大。
- n之前位置的元素都小于等于nums[n],n之后的元素都大于nums[n]。
代码
class Solution {
public:
int minMoves2(vector<int>& nums) {
nth_element(nums.begin(), nums.begin() + nums.size() / 2, nums.end());
int x = nums[nums.size() / 2];
int sum = 0;
for (auto v : nums) sum += abs(x - v);
return sum;
}
};