Leetcode 149 - Max Points on a Line(Math)

23 篇文章 0 订阅

题意

一个2D平面内有若干个点,找一条直线使之穿过的点数最多,求最多穿过的点数。

思路

首先,我们先从一般情况考虑,假设我们当前直线已经穿过一个点 (a,b) 了,那么只需要枚举剩下的点 p(x,y) ,并且建立map[x - a / y - b]穿过点数的映射即可。

那么,我们这道题只需要枚举直线穿过的点,然后再遍历剩下的点求斜率并且统计就好。

在求斜率的时候,假设我们当前直线起点为 (a,b) ,穿过两个点: (x1,y1) (x2,y2) 。那么斜率为 y2y1x2x1 。但是实际上会存在精度误差,比如现在leetcode数据增强了直接求斜率就不能过了。所以我们要找一个替代的方案。

假设我们斜率 k=xy ,我们需要将double型的k转换成一个无精度损失的表示方法,因为 k=xy ,我们只需要将分子分母约分成最简表示 k=xy ,那么我们的k就可以转化成了pair<int, int>(x', y')

所以,我们将分子分母同除最大公约数即可。

注意:

  1. 重复点
  2. 斜率为无穷大的点。

代码

/**
 * Definition for a point.
 * struct Point {
 *     int x;
 *     int y;
 *     Point() : x(0), y(0) {}
 *     Point(int a, int b) : x(a), y(b) {}
 * };
 */
class Solution {
public:
    int maxPoints(vector<Point>& point) {
        map<pair<int, int>, int> slope;
        int ans = 0;
        for (int i = 0; i < point.size(); i++) {
            int dup = 1;
            slope.clear();
            for (int j = i + 1; j < point.size(); j++) {
                if (point[i].x == point[j].x && point[i].y == point[j].y) {dup++; continue;}
                if (point[i].x == point[j].x) {
                    slope[make_pair(0, 0)]++;
                } else {
                    int ny = point[j].y - point[i].y;
                    int nx = point[j].x - point[i].x;
                    int g = __gcd(nx, ny);
                    nx /= g, ny /= g;
                    slope[make_pair(nx, ny)]++;
                }
            }
            ans = max(ans, dup);
            for (auto it = slope.begin(); it != slope.end(); it++) {
                ans = max(ans, it->second + dup);
            }
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值