问题描述:
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int maxn=100010;
int a[maxn],d1[maxn],d2[maxn],n;
int main()
{
while(cin>>a[++n]);
n--;
d1[1]=a[1];//求不上升子序列
d2[1]=a[1];//求上升子序列
int len1=1,len2=1;
for(int i=2;i<=n;i++){
if(d1[len1]>=a[i]) d1[++len1]=a[i];
else{
int pos=upper_bound(d1+1,d1+1+len1,a[i],greater<int>())-d1;//找出第一个小于a[i]的数的位置
d1[pos]=a[i];//替换位置
}
if(d2[len2]<a[i]) d2[++len2]=a[i];
else{
int pos=lower_bound(d2+1,d2+1+len2,a[i])-d2;//找出第一个大于等于a[i]的数的位置
d2[pos]=a[i];//替换位置
}
}
cout<<len1<<endl<<len2<<endl;
return 0;
}
总结:
动态规划+二分法模板题
lower_bound:找出序列中第一个大于等于x的数
upper_bound:找出序列中第一个大于x的数
加greater( )可处理下降序列
PS:图片取自某位大佬的b站视频
总之前后是相对称的(个人这样理解)