题目大意:K个挤奶机,C头牛,每个挤奶机最多可以接待M头牛,各个K,C之间可能有道路连接,要让每个牛都找到挤奶机,求最小的走的路程最远的牛所需走的距离。
思路:首先看到要最小化最大值,所以需要二分。可以先用Floyd算法预处理出个点之间最短距离。之后来进行二分的判断,对于每个牛都要匹配到一个挤奶机,而每个挤奶机可以匹配多头牛,所以可以用二分图匹配,建立源汇点S,T,S与每个牛连一条cap为1的边,而每台挤奶机要与T连一条cap为M的边。对于每个要判断的距离,如果牛-挤奶机之间的距离小于此,就连一条边,否则不连边。之后求最大流即可,如果正好等于C,也就是所有牛都完成匹配,说明判断的这个距离可行。
代码:
//POJ.2112
#include<bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
typedef long long ll;
#define INF 0x3f3f3f3f
const int maxv = 1010;
int V;
int D[maxv][maxv];
int K, C, M;
struct edge {
int to, cap, rev;
};
vector<edge> G[maxv];
int level[maxv];
int iter[maxv];
void add_edge(int from, int to, int cap)
{
G[from].push_back(edge{ to, cap, (int)G[to].size() });
G[to].push_back(edge{ from, 0, (int)G[from].size() - 1 });
}
void bfs(int s)
{
memset(level, -1, sizeof(level));
queue<int> que;
level[s] = 0;
que.push(s);
while (!que.empty())
{
int v = que.front();
que.pop();
for (int i = 0; i < G[v].size(); i++)
{
edge& e = G[v][i];
if (e.cap > 0 && level[e.to] < 0)
{
level[e.to] = level[v] + 1;
que.push(e.to);
}
}
}
}
int dfs(int v, int t, int f)//找增广路
{
if (v == t)
return f;
for (int& i = iter[v]; i < G[v].size(); i++)
{
edge& e = G[v][i];
if (e.cap > 0 && level[v] < level[e.to])
{
int d = dfs(e.to, t, min(f, e.cap));
if (d > 0)
{
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
int max_flow(int s, int t)
{
int flow = 0;
for (;;)
{
bfs(s);
if (level[t] < 0)
return flow;
memset(iter, 0, sizeof(iter));
int f;
while ((f = dfs(s, t, 0x3f3f3f3f3f3f3f3f)) > 0)
flow += f;
}
}
bool E(int f)//看最多仅需f距离是否可行
{
//S=V,T=V+1
for (int i = 0; i < V + 2; i++)//最大流建图
G[i].clear();
for (int i = 0; i < K; i++)//挤奶-T连边
add_edge(i, V + 1, M);
for (int i = K; i < V; i++)//S-牛连边
add_edge(V, i, 1);
for (int i = 0; i < K; i++)//牛-挤奶之间,如果最短路小于f,连边容量1,否则不连边(只看《=f的边)
{
for (int j = K; j < V; j++)
{
if (D[j][i] <= f)
add_edge(j, i, 1);
}
}
return max_flow(V, V + 1) == C;
}
void FloydWarshell()
{
for (int k = 0; k < V; k++)
{
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
D[i][j] = min(D[i][j], D[i][k] + D[k][j]);
}
}
}
void solve()
{
FloydWarshell();
int lo = 0, hi = 1000 * V;
while (hi - lo > 1)
{
int mi = (lo + hi) / 2;
if (E(mi))
hi = mi;
else
lo = mi;
}
printf("%d\n", hi);
}
int main()
{
scanf("%d%d%d", &K, &C, &M);
V = K + C;
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
{
int d;
scanf("%d", &d);
D[i][j] = d ? d : INF;
}
}
solve();
return 0;
}