AcWing 325. 计算机

5 篇文章 0 订阅

传送门

题目大意:

一棵无根树,每条边有一个距离,求每个顶点到距离其最远的顶点的距离。

思路:

考虑树形DP+换根。

令D[x]x到以x为根的子树当中的最长距离,d[x]为次长距离,U[x]为x向上走的最长距离,F[x]为x的答案。

第一次dfs以1为根可以很容易求出D[x]与d[x]。

之后第二次dfs对每个顶点去求最终的答案。

令p为父节点,v为当前节点,l为p到v的距离,于是有

F[x]=max(D[x],U[x])

对于D[p] == D[v] + l的情况,说明p向下的最长距离可以从v经过,那么就应该从父节点的向下次长距离,向上的最长距离的最大值+p到v之间的距离中选择一个作为U[x],即U[x]=max(d[p],U[p])+l。

否则,直接就可以考虑父节点向下走的最大值,于是U[x]=max(D[p],U[p])+l

最后每个节点的答案即为F[x]。

#include<bits/stdc++.h>
#include<unordered_map>
using namespace std;
typedef long long LL;
//#define int LL
#pragma warning(disable :4996)
typedef unsigned long long ULL;
typedef pair<int, int> PII;
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
const int maxn = 10010;
const long double eps = 1e-8;
const LL MOD = 998244353;

struct Edge {
	int to, len;
};
int N;
int root = 1;
int F[maxn], D[maxn], d[maxn], U[maxn];//D[x]x到以x为根的子树当中的最长距离,d[x]次长距离,U[x]x向上走的最长距离,F[x]x的答案。
vector<Edge>G[maxn];
bool used[maxn];

void add_edge(int from, int to, int len)
{
	G[from].push_back(Edge{ to,len });
	G[to].push_back(Edge{ from,len });
}

void dfs1(int v)
{
	d[v] = D[v] = 0;
	used[v] = true;
	for (int i = 0; i < G[v].size(); i++)
	{
		Edge& e = G[v][i];
		if (!used[e.to])
		{
			dfs1(e.to);
			int val = D[e.to] + e.len;
			if (val >= D[v])
			{
				d[v] = D[v];
				D[v] = val;
			}
			else if (val > d[v])
				d[v] = val;
		}
	}
}

void dfs2(int v, int p, int l)
{
	used[v] = true;
	if (D[p] == D[v] + l)//p的最长经过v
		U[v] = l + max(d[p], U[p]);
	else
		U[v] = l + max(D[p], U[p]);
	F[v] = max(U[v], D[v]);
	for (int i = 0; i < G[v].size(); i++)
	{
		Edge& e = G[v][i];
		if (!used[e.to])
			dfs2(e.to, v, e.len);
	}
}

void solve()
{
	memset(used, 0, sizeof(used));
	memset(D, 0, sizeof(D));
	memset(d, 0, sizeof(d));
	memset(F, 0, sizeof(F));
	memset(U, 0, sizeof(U));
	dfs1(root);
	memset(used, 0, sizeof(used));
	dfs2(root, 0, 0);
	for (int i = 1; i <= N; i++)
		cout << F[i] << endl;
}

int main()
{
	IOS;
	while (cin >> N)
	{
		for (int i = 0; i <= N; i++)
			G[i].clear();
		int v, len;
		for (int i = 2; i <= N; i++)
		{
			cin >> v >> len;
			add_edge(i, v, len);
		}
		solve();
	}

	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目链接:https://www.acwing.com/problem/content/4948/ 题目描述: 给定一棵有 $n$ 个结点的树,结点从 $1$ 到 $n$ 编号,每个结点都有一个权值 $w_i$,现在有 $m$ 次操作,每次操作是将树中编号为 $x$ 的结点的权值加上 $y$,然后询问一些节点是否为叶子节点,如果是输出 $1$,否则输出 $0$。 输入格式: 第一行包含两个整数 $n$ 和 $m$。 第二行包含 $n$ 个整数,其中第 $i$ 个整数表示结点 $i$ 的初始权值 $w_i$。 接下来 $n-1$ 行,每行包含两个整数 $a$ 和 $b$,表示点 $a$ 和点 $b$ 之间有一条无向边。 接下来 $m$ 行,每行描述一次操作,格式为三个整数 $t,x,y$。其中 $t$ 表示操作类型,$t=1$ 时表示将编号为 $x$ 的结点的权值加上 $y$,$t=2$ 时表示询问编号为 $x$ 的结点是否为叶子节点。 输出格式: 对于每个操作 $t=2$,输出一个结果,表示询问的结点是否为叶子节点。 数据范围: $1≤n,m≤10^5$, $1≤w_i,y≤10^9$ 样例: 输入: 5 5 1 2 3 4 5 1 2 1 3 3 4 3 5 2 3 0 1 3 100 2 3 0 1 1 100 2 3 0 输出: 1 0 0 算法1: 暴力dfs,每次都重新遍历整棵树,时间复杂度 $O(nm)$ 时间复杂度: 最坏情况下,每次操作都要遍历整棵树,时间复杂度 $O(nm)$,无法通过此题。 算法2: 用一个 vector<int> sons[n+5] 来存储每个点的所有子节点,这样可以用 $O(n)$ 预处理出每个点的度数 $deg_i$,如果 $deg_i=0$,则 $i$ 是叶子节点,否则不是。 对于每个操作,只需要更新叶子节点关系的变化就可以了。如果某个节点的度数从 $1$ 变成 $0$,则该节点变成了叶子节点;如果某个节点的度数从 $0$ 变成 $1$,则该节点不再是叶子节点。 时间复杂度: 每次操作的时间复杂度是 $O(1)$,总时间复杂度 $O(m)$,可以通过此题。 C++ 代码: (算法2)

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值