2021-07-25

M-P神经元

1.M-P神经元(模拟生物行为的数学模型):接手n个输入(来自其他的神经元),并给各个输入赋予权重计算加权和,再跟自己特有的阀值 θ θ θ比较(通常用减法),最后经过激活函数(模拟“抑制”和激活)处理得到输出(一般输出传给下个神经元)
y = f ( ∑ x = 1 n w i x i − θ ) = f ( w T x + b ) y=f(\sum\limits_{x=1}^nw_ix_i-θ)=f(w^Tx+b) y=f(x=1nwixiθ)=f(wTx+b)
单个M-P神经元:感知机(sgn做激活函数)、对数几率回归(sigmoid作激活函数)多个M-P神经元:神经网络

感知机

1.感知机模型:激活函数送给你(阶跃函数)的神经元
y = s g n ( w T X − θ ) = { 1 w T − θ ≥ 0 0 w T − θ < 0 y=sgn(w^TX-θ)=\left\{ \begin{array}{rcl} 1 & & {w^T- θ ≥ 0}\\ 0 & & {w^T- θ < 0} \end{array} \right. y=sgn(wTXθ)={10wTθ0wTθ<0
其中, x ∈ R n x∈R^n xRn为样本向量,是感知神经网络模型的输入, w , θ 是 感 知 机 模 型 参 数 , w ∈ R n 为 权 重 , θ 为 阈 值 w,θ是感知机模型参数,w∈R^n为权重,θ为阈值 w,θwRnθ
2.再从几何角度来说,给定一个线性可分的数据集 T T T,感知机的学习目标是求得能对收据集 T T T中的正负样本完全正确划分的超平面,其中 w T x − θ w^Tx-θ wTxθ即平面方程。n维空间的超平面 ( w T x + b = 0 , 其 中 w , x ∈ R n ) (w^Tx+b=0,其中w,x∈R^n) wTx+b=0,w,xRn
(1)超平面方程不唯一
(2)法向量 w 垂 直 于 超 平 面 w垂直于超平面 w
(3)法向量 w w w和位移项b确定一个超平面
(4)法向量 w 指 向 的 那 一 半 空 间 w指向的那一半空间 w为正空间,另一半为负空间
3.感知机学习策略:随机初始化 w , b w,b w,b将全体训练样本代入模型找出误分类样本,假设此时误分类样本集合为 M 恒 属 于 T M恒属于T MT,对任意的一个误分类样本 ( w , y ) ∈ M 来 说 (w,y)∈M来说 (w,y)M,当 w T x − θ ≥ 0 w^Tx-θ≥0 wTxθ0时,模型输出的值 y = 1 y=1 y=1,样本真实标记为 y = 0 y=0 y=0;反之,当 w T x − θ < 0 w^Tx-θ<0 wTxθ<0时模型输出值为 y = 0 y=0 y=0,样本真实标记为 y = 1 y=1 y=1.综合两种情形可知,以下公式恒成立。
( y 1 − y ) ( w T x − θ ) ≥ 0 (y^1-y)(w^Tx-θ)≥0 (y1y)(wTxθ)0
所以给定数据集 T T T,其损失函数可以定义为:
L ( w , θ ) = ∑ x ∈ M ( y 1 − y ) ( w T x − θ ) L(w,θ)=\sum\limits_{x∈M}(y^1-y)(w^Tx-θ) L(w,θ)=xM(y1y)(wTxθ)
显然,此损失函数是非负数,如果没有误分类点,损失函数值是O,而且,误分类越少,离平面越近,损失函数值就越小

感知机

3.1具体地,给定数据集。
T = ( x 1 , y 1 ) ( x 2 , y 2 ) . . . . . . ( x n , y n ) T={(x_1,y_1)(x_2,y_2)......(x_n,y_n)} T=x1,y1(x2,y2)......(xn,yn)
其 中 x i ∈ R n , y i ∈ 0 , 1 , 求 参 数 w , θ 其中x_i∈R^n,y_i∈{0,1},求参数w,θ xiRn,yi0,1,wθ使其为极小损失函数的解:
m i n w , θ L ( w , θ ) = m i n w , θ ∑ x i ∈ M ( y 1 − y ) ( w T x − θ ) min_{w,θ}L(w,θ)=min_{w,θ}\sum\limits_{x_i∈M}(y^1-y)(w^Tx-θ) minw,θL(w,θ)=minw,θxiM(y1y)(wTxθ)其中 M 恒 属 于 T 为 误 分 类 样 本 集 合 。 若 将 阈 值 θ 看 做 一 个 固 定 输 入 为 − 1 的 “ 亚 节 点 ” M恒属于T为误分类样本集合。若将阈值θ看做一个固定输入为-1的“亚节点” MTθ1
− θ = − 1 ∗ w n + 1 = x n + 1 ∗ w n + 1 -θ=-1*w_{n+1}=x_{n+1}*w_{n+1} θ=1wn+1=xn+1wn+1
根据该公式,可将要求的极小化问题进一步化解
m i n w L ( w ) = m i n w ∑ x ∈ M ( y 1 − y ) w T x i min_wL(w)=min_w\sum\limits_{x∈M}(y^1-y)w^Tx_i minwL(w)=minwxM(y1y)wTxi
4.感知机学习算法:当误分类样本集合M固定时,那么可以求得损失函数 L ( w ) = ∑ x i ∈ M ( y 1 − y i ) x i L(w)=\sum\limits_{x_i∈M}(y^1-y_i)x_i L(w)=xiM(y1yi)xi
感知机学习算法具体采用的是随机梯度下降法,也就是极小化过程中不是一次使M中所有误分点的梯度下降,而是一次随机选取一个误分类点使其梯度下降。所以权重 w w w的公式更新为
w < − w + Δ w w<-w+Δw w<w+Δw
Δ w = − η ( y 1 − y i ) x i = η ( y i − y i 1 ) Δw=-η(y^1-y_i)x_i=η(y_i-y_i^1) Δw=η(y1yi)xi=η(yiyi1)
相应地, w 中 某 个 分 离 w i w中某个分离w_i wwi的更新公式

神经网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值