从永远到永远-吉他和弦替代原理

0.背景

1.和弦分类

按照不同标准(音程组成音、是否和谐、功能性等),和弦可以被分成不同分类,此处主要讨论按照功能性分组。
按照功能性,调式内和弦可分为:主和弦、属和弦、下属和弦、属七和弦、附属和弦、离调和弦。

1.主和弦

三和弦的一种,在和弦体系中起主导作用的和弦。主和弦和曲子的主干音密切相关,它确定了整个曲子的基调。以C大调为例,其主和弦就是C和弦(构成音为1、3、5);如果是a小调,那么它的主和弦就是Am和弦(构成音为6、1、3)。

2.属和弦

三和弦的一种。它是以歌曲中某调的属音为根音,对主和弦起附属的作用(即和主和弦是从属关系),所以叫做属和弦。它的根音是主和弦的根音的上行纯五度的音。
以C大调为例,主和弦(C和弦)的根音为1,1的上行纯五度为5,那么这个调的属和弦就是G和弦。属和弦具有倾向主和弦的特性,这一点在和弦的编配中十分有用。

3.属七和弦

属七和弦,一看名字就知道和属和弦脱不了关系。属七和弦是在属和弦的顶部再叠加一个小三度音变成的。以属和弦G和弦为例,它的构成音为5、7、2(高音),在其顶部叠加一个小三度,2(高音)和4(高音)为一个小三度,所以为G7和弦。属七和弦比属和弦具有更强烈倾向于主和弦的特性

4.下属和弦

下属和弦,和属和弦很相似,不同的是属和弦是主和弦的根音上行纯五度,而下属和弦是主和弦的根音下行纯五度得到的。C大调中,属和弦为G和弦,而下属和弦为F和弦。

5.副属和弦

副属和弦,是临时主和弦的属和弦。这样一讲有些朋友又蒙圈了,“临时主和弦”又是个什么鬼?举个例子,在和弦进行中,两个连接的和弦,后面一个和弦是前面一个和弦的下行纯五度,那么,前者就是副属和弦,而后者是临时主和弦。
在1、2、3、4、5、6、7各基本音级及它们的变化音级中,除了主音1之外,其他任何音级都能构成临时主和弦。在不太重要的地方,用副属和弦代替主和弦,会有意想不到的独特声音效果。

6.离调和弦

离调和弦,这种和弦中含有变化音级中的音(升降音)。如C调中的E和弦,构成音为3、#5、7,其中的#5就是变化音级。在曲子中使用离调和弦,可以大大地丰富曲子的色彩。

总结:按照功能性,可将和弦分为:

功能组和弦(级数)
主功能Ⅰ、Ⅲm、Ⅵm
属功能Ⅴ、Ⅶdim
下属功能Ⅳ、Ⅱm

大调Ⅰ、Ⅴ、Ⅳ为正三和弦,Ⅵm 、Ⅲm 、Ⅱm、Ⅶdim便是副和弦,为辅助作用。如果是小调Ⅵm 、Ⅲm 、Ⅱm为正三和弦,Ⅰ、Ⅴ、Ⅳ、Ⅶdim便是副和弦,为辅助作用。

2.功能组化分依据

1.划分依据及分组

功能组的划分我们主要依据的是和弦延申音包含关系划分的。
由<和弦分类>可以得出结论,调内的Ⅰ、Ⅳ、Ⅴ分别被划分在主和弦组、属和弦组、下属和弦组。那么其他的Ⅱm、Ⅲm、Ⅵm、Ⅶdim级的划分依据又如何化分的呢。
以C调为例,

  • Am和弦组成音是A C E,它的延申和弦Am7组成音是 A C E G 包含了C和弦(C E G),Am和弦跟C和弦关系很近就像爸爸和叔叔有着一部分相同的基因,所以Am和弦被划分为主和弦组。
  • Cmaj7和弦 的组成音 C E G B 中包含了 Em和弦(E G B) 所以Em和弦也被划分到主和弦功能组。
  • Dm7组成音为 D F A C,包含了F和弦(F A C),所以Dm被划分到下属功能组
  • G7组成音为G B D F,包含了Bdim和弦(B D F),所以Bdim被划分到“属功能组”

2.Ⅵm、Ⅲm级

在大小调体系中,1、3、5级都是稳定音级。Am和弦组成音是6 1 3包含了 1 3 这两个稳定音级,所以我们会更倾向于把Am划分到主和弦组。在实际运用中,Am与F弦一定程度上也是可以替代的。
同理,虽然Em7和弦(E G B D)中包含了G和弦(G B D),但是Em和弦3 5 7中,包含了 3 5 这两个稳定音级,所以我们倾向于把Em划分到主和弦组。在实际运用中,Em与G弦一定程度上也是可以替代的。

同功能组的和弦在一定程度上可以相互替代

3.替代

1.传统的和弦链接与替代

古典音乐中常见的和弦连接方式,如下:

主功能——属功能——主功能
主功能——下属功能­——主功能
主功能­——下属功能——属功能——主功能

及现代音乐中常用到的:

主功能——属功能——下属功能——主功能

不同的音阶,他们的主功能、属功能、下属功能都有所不同,那么当以某种概念配和弦的时候要注意哪些是重要的和弦,如果是大调Ⅰ、Ⅴ、Ⅳ为正三和弦,Ⅵm 、Ⅲm 、Ⅱm、Ⅶdim便是副和弦,为辅助作用。如果是小调Ⅵm 、Ⅲm 、Ⅱm为正三和弦,Ⅰ、Ⅴ、Ⅳ、Ⅶdim便是副和弦,为辅助作用。

当你给歌曲配和弦的时候,如果是大调的曲子,你使用的都是Ⅰ、Ⅴ、Ⅳ来编配,可能在色彩上会比较单一,这时候你需要通过副和弦来进行增加和声的色彩。同样的已以上的主功能­——下属功能——属功能——主功能和声链接的模式为例,那么将会得到很多的替代而得到的和弦链接。
以C大调为例:

  • C——Dm——G——C
  • C——F——Bdim——C
  • C——Dm——Bdim——C
  • C——F——Em——Dm——C

在和弦的的替代上,要注意大调和小调和弦的选择上的进行方式,控制好替代的手法,切莫将原本想做大调的和声链接,但是最后替代过度而变成了小调的和弦链接。如:C——Dm——Em——Am

2.离调和弦替代

和弦链接中,在不影响旋律的情况下,除Ⅶdim以外的其他和弦前都可以添加他们的属和弦,此时这个和弦成为附属和弦。每个附属和弦前都能添加他们的下属和弦,称之为附下属和弦。
以C大调为例,每级和弦添加附属和弦和附下属和弦后:

  • Dm7一一G7一一C+
  • Em7-5一一A7一一Dm
  • F#m7-5一一B7一一Em
  • Gm7一一C7一一F
  • Am7一一D7一一G
  • Bm7-5一一E7一一Am

3.属和弦替代

属和弦是一个非常特别的功能,它需要越刺激越好,这样才能有向主和弦解决的倾向性。

1.降五级替代

降五级替代在某些教材也称为降二级替代,比如C自然大调的和弦链接Dm7——G7——C
它的G7和弦可以使用Db7和弦进行替代使用,因为他们的三七音相同,而且当和弦替代后的结构实际上是G7的b9、#11和弦。

2.减七和弦替代

以G7为例,使用它上方小二度的减七和弦进行替代,实际效果为G7b9和弦

3.重属和弦

在原有的属和弦前再添加一个属和弦,这个我们称为重属和弦。比如G7和弦前加上一个属和弦为D7
通过以上的属和弦替代的方式,我们的和弦链接将会得到很多很多中可能性,同样以主功能­——下属功能——属功能——主功能为例。

  • C——F——G——C
  • C——Dm7——G7——C
  • C——Dm7——Db7——C
  • C——Dm7——Ddim7——C
  • C——D7——G7——C
  • C——Ab7——G7——C
  • C——Adim7——G7——C
  • C——Ab7——Db7——C
  • C——Ab7——Ddim7——C
  • C——Adim7——Ddim7——C
  • C——D7——Db7——C
  • C——D7——Ddim7——C

999 参考资料

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
内容概要:本文详细介绍了利用改进粒子群算法(PSO)进行混合储能系统(如电池与超级电容组合)容量优化的方法。文中首先指出了传统PSO易陷入局部最优的问题,并提出通过非线性衰减惯性权重、引入混沌因子和突变操作等方法来改进算法性能。随后,作者展示了具体的Python代码实现,包括粒子更新策略、适应度函数设计以及边界处理等方面的内容。适应度函数不仅考虑了设备的成本,还加入了对设备寿命和功率调节失败率的考量,确保优化结果的实际可行性。实验结果显示,在风光发电系统的应用场景中,改进后的PSO能够在较短时间内找到接近全局最优解的储能配置方案,相比传统方法降低了系统总成本并提高了循环寿命。 适合人群:从事电力系统、新能源技术研究的专业人士,尤其是对储能系统优化感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要对混合储能系统进行容量优化的场合,旨在提高储能系统的经济效益和使用寿命,同时保证供电稳定性。通过学习本文提供的理论知识和代码实例,读者能够掌握改进粒子群算法的应用技巧,从而应用于实际工程项目中。 其他说明:文中提到的所有代码均为Python实现,且已在GitHub上提供完整的源代码链接(尽管文中给出的是虚拟地址)。此外,作者还计划将改进的PSO与其他优化算法相结合,进一步提升求解复杂问题的能力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值