YOLOv5安装教程

YOLOv5神经网络安装教程

Anaconda下载

①Anaconda是什么?

🚀 它是一个功能强大的数据科学平台(这是比较严谨且抽象的回答)简单来说,它就是一个工具,它功能强大,做数据分析的,机器学习的,人工智能算法的都会用到它,所以它就是一个工具,现在不要畏惧它,总有一天你就会熟练的使用这个工具。

②运行yolov5为什么要下载Anaconda呢?

🚀 首先描述一下使用它的需求:现在人工智能算法发展的特别快,有很多的大模型,而想要运行这些代码就必定会用到某些库,或者某些特定版本的库;现在我想运行A人工智能算法,它需要库X的3.8版本,那就安装X的3.8版本,来运行A算法;现在人工智能算法发展的特别快又出现了B人工智能算法,而运行它的需求是库X的3.9版本,那现在就又要安装库X的3.9版本了,那么现在需求来了,怎么样才能让我这个好学的程序员同时学习A和B这个算法呢?怎么才能管理这些繁杂的运行环境库呢?

🚀 Anaconda解决需求:Anaconda通过创建不同的运行虚拟环境来解决,有了Anaconda就可以方便的创建和管理这些人工智能大模型的运行环境了。

🚀 Anaconda解决上述需求如下:程序员通过Anaconda创建运行人工智能算法A的一个虚拟环境,在这个虚拟环境里安装运行这个算法所必需的库,那么想运行A算法,就进入A的虚拟环境运行;对于算法B也创建一个对应的运行虚拟环境,并在它的虚拟环境里安装它所需要的库。

③Ananconda下载

Anaconda下载链接如下,点击进行主页。
Anaconda DownLoad

在这里插入图片描述
安装完成后,点击电脑的开始键,就可以看见我们安装的Anaconda
在这里插入图片描述
需要注意的是,安装后想将我们的大蟒蛇Anaconda卸载的话,千万别按着常规方法卸载,会导致卸载不干净,下次再安装Anaconda的时候就会安装失败,一定要去CSDN上搜索教程卸载。

安装Pytharm

这个安装也没什么要注意的,注意社区版本community版,该版本免费,下载地址如下
pycharm download community
在这里插入图片描述

Yolov5下载与安装

①Github下载yolov5项目

Yolov5 项目模型下载
选择git clone 或者 download code 都行

git方式

git clone https://github.com/ultralytics/yolov5.git

官网下载
在这里插入图片描述

②配置yolov5运行环境

win 运行 Anaconda Prompt
在这里插入图片描述
效果:

(base)C:\User\Caicien>

1)创建yolov5虚拟环境

conda create -n yolov5 python=3.8 //来创建yolov5的虚拟运行环境

执行过程效果图
在这里插入图片描述
输入完成后,会如上图所示,之后如下图所示,输入y
在这里插入图片描述
查看虚拟环境是否安装成功

conda env list

在这里插入图片描述
环境准备完成,开始安装yolov5需要的依赖包.yolov5的作者是已经给我们列好了安装哪些库的,他把这些需要的库都放在requirements.txt中,而这个requirements.txt就在我们刚下载的yolov5-master(这里我的项目是yolov5)文件夹中
在这里插入图片描述
首先先激活虚拟环境:

conda activate yolov5

在这里插入图片描述
在这里插入图片描述

而那些所必须的库,就是需要安装在这个环境中,接着使用如下命令安装库。(安装时后不要开梯子,可能会错,安装不成功。)

pip install -r D:/ai_project\yolov5/requirements.txt

输入命令后,如上图所示,这些必要的库就开始安装了,等待一段时间,让它安装完成,安装过程可能会出现非常慢的情况,遇到这种情况,直接Ctrl+C中断安装,然后添加上清华源来pip。清华源如下

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r D:/ai_project\yolov5/requirements.txt

在这里插入图片描述
安装完成
在这里插入图片描述
打开yolov5项目

PyCharm --> open in project --> <你的yolov5项目路径>这里是引用

creating virtual environment 这里直接 Cancel (因为我们是虚拟环境运行的)

选择setting -> python Interpreter -> add Interpreter
在这里插入图片描述
🚀 将yolov5-master配置到创建的yolov5 虚拟环境中
在这里插入图片描述

在这里插入图片描述
恭喜你,到这里环境配置完成 !!!!!

然后测试一下代码,先下载yolov5s.pt文件,这个文件后面训练的时候会用到的,下载后放这里。下载路径,点击就可以下载。
yolov5s.pt 模型文件
放在项目根目录
在这里插入图片描述

运行Yolov5与测试

🚀 直接运行detect.py代码,就会运行成功,如下图所示,Result saved to runs\detect\exp3,表示成功
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

到这里,就大功告成了!!!!!

承接JAVA、Python各种开发
微信号: mkingxiaohao
在这里插入图片描述

添加公众号不定时上传破解资源
在这里插入图片描述

### YOLOv5 安装教程 #### 下载YOLOv5源码 为了开始使用YOLOv5,需先从GitHub仓库克隆官方的YOLOv5项目。这一步可以通过命令行工具完成: ```bash git clone https://github.com/ultralytics/yolov5.git cd yolov5 ``` 上述操作会创建一个名为`yolov5`的新文件夹并进入该目录[^1]。 #### 设置Python虚拟环境 建议在一个独立的Python环境中工作以避免依赖冲突。可以利用`virtualenv`或`conda`来建立新的环境。这里展示如何通过`conda`创建一个新的Python 3.8环境: ```bash conda create --name yolov5 python=3.8 -y conda activate yolov5 ``` 激活新环境之后就可以继续安装必要的库了[^2]。 #### 安装必需软件包 在准备好的环境中执行以下pip指令来安装所需的Python库: ```bash pip install -r requirements.txt ``` 此命令读取位于根目录下的`requirements.txt`文件,并自动处理所有依赖项的安装过程。 #### CUDA与cuDNN配置 对于希望加速模型训练和推理速度的用户来说,安装CUDA Toolkit以及匹配版本的cuDNN是非常重要的。访问[NVIDIA开发者网站](https://developer.nvidia.com/cudnn),根据个人硬件情况选择合适的版本下载安装。 #### 测试安装成功与否 最后,在确保一切设置无误的情况下,运行下面这条简单的测试脚本来验证YOLOv5能否正常运作: ```python import torch from models.experimental import attempt_load model = attempt_load('yolov5s.pt', map_location=torch.device('cpu')) print(model) ``` 如果以上代码能够顺利打印出网络结构,则说明YOLOv5已经成功部署到本地机器上了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ji-JIUJIU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值