YOLO-yolov5安装教程(详细流程)

本文详细指导如何在中国环境下安装Yolov5深度学习框架,包括Miniconda的配置、PyTorch的选择与安装、以及使用清华源加速包下载。最后介绍了如何检测模型安装并提供下载官方预训练模型的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

step1:找到安装yolov5需要的网站(以下是网站链接地址)

1.miniconda:Index of /anaconda/miniconda/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

2.pypi国内清华源

pypi | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

3.pytorch

PyTorch

4.yolov5源代码

GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite

step2:下载安装miniconda,进行环境配置

进入miniconda网站选择一个安装包(py38版本)。

在安装过程中需要注意的地方:

在这个界面需要勾选前三个。

到这里显示安装成功

在开始菜单中找到刚刚下载安装好的miniconda(注意:一定要是Anaconda Prompt)。

点击anaconda prompt进入后针对yolov5创建自己的环境。

输入conda create -n yolov5 python=3.8(即创建了一个名为yolov5的虚拟环境)。

然后回车进行配置,出现下面这个结果后继续输入y,进行确认安装。

安装结束后,继续输入conda activate yolov5进行激活。

到这里关于miniconda的环境配置结束了,接下来配置清华镜像源。

step3:配置清华镜像源

进入清华源网站后选择第三行代码复制粘贴到我们刚刚创建好的yolov5虚拟环境中。

回车安装出现下面结果即可

配置清华镜像源的目的是在以后使用中安装一些包是下载的速度会快很多。

step4:安装pytorch

进入pytorch官网后根据自己电脑显卡性能选择不同的pytorch和cuda版本。

显卡低于20系列选择cuda10.x版本即可。

显卡30系40系选择cuda11.x版本即可。

我使用的笔记本电脑(显卡max350),性能约等于gtx1050显卡,所以选择的是cuda10.2版本,

台式电脑(显卡4060TI),选择的是cuda11.6版本。

上述两种版本我已经验证过可以使用,其他版本可能会出现报错情况。

将安装语句复制到命令行中回车进行安装

出现下面结果则pytorch安装成功

step5:下载yolov5源代码

进入GitHub网站找到以下这个图标

然后找到以下箭头所指的位置(进入yolov5-7.0版本下载界面)

点击箭头位置下载即可

在cmd中对yolov5算法代码安装所需要的的安装包

pip安装结束后大功告成,yolov5安装结束。

补充:检测模型的安装

进入下面这个网站下载yolov5s.pt(用来检测训练的官方模型)https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt

在进入github官网时可能网络会出现不稳定的情况。(有条件的同学可以翻墙)

下载好了后直接将yolov5s.pt文件copy到yolov5-7.0代码文件夹中。

也可以直接进入yolov5下载界面手动安装模型文件,官方提供了5个模型(n,s,m,l,x)

下次更新:代码运行环境vscode的安装配置教程,使用这个IDE来运行yolov5。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值