在人工智能技术日新月异的今天,企业对于AI客服与智能呼叫系统的要求已超越了基础的自动化,转而追求更智能、更自然、更高效的人机协作。近日,云蝠智能迎来了一系列重磅功能升级,从核心模型能力、交互策略、知识检索到对话流程与效果评估,进行了全方位、立体化的迭代。此次升级并非简单的功能堆砌,而是围绕“提升对话质量、优化用户体验、深化业务洞察”三大核心目标展开的精准进化。
一、核心引擎进化:一句话生成,接入全球最新模型
AI呼叫的“大脑”是其核心竞争力的体现。本次升级的亮点在于核心生成式AI模型的全面强化。
升级点阐述: 云蝠智能接入全球最新的尖端大语言模型,实现了“一句话生成”能力的质的飞跃。这意味着,在进行外呼或接待时,系统能够根据对话上下文,在短时间内生成更准确、更自然、更贴合人类表达习惯的回应。
价值解读:
-
响应更迅捷: 最新大模型的接入缩短了AI思考与响应的时间,使得对话流程如行云流水,有效减少了用户等待的“空白期”,提升了沟通效率。
-
表达更拟人: 借助最新模型的强大语义理解与生成能力,AI的发言不再生硬刻板,而是充满了语言的细微变化和情感色彩,能够更好地共情用户,降低对话的机械感,提升用户接受度。
-
应对更从容: 面对用户突然的提问或复杂的业务咨询,新一代模型展现了更强的逻辑推理与多轮对话能力,能够更准确地抓住用户核心意图,并提供有价值的解答。
二、协同智能深化:完善智能体与智能体转接策略
复杂的业务场景往往需要多个“专家”协同作战。云蝠智能本次对“智能体”之间的协作机制进行了深度优化。
升级点阐述: 系统进一步完善了不同职能AI智能体之间的转接策略与交互逻辑。当对话中识别到用户需求超出当前智能体的处理范围(例如,从常规咨询转向专项投诉或复杂售前),系统会平滑、自然地将对话引导至更专业的智能体处,实现“专家问诊”式的无缝接力。
价值解读:
-
服务无断点: 优化的转接策略确保了用户旅程的连续性,避免了因转接造成的重复陈述和信息丢失,保障了服务体验的完整与流畅。
-
资源最优化: 每个智能体可以专注于自己最擅长的领域,通过内部高效协作,确保每一个用户都能得到专业、对口的服务,提升了整体问题解决率。
三、知识检索精准化:RAG知识中心支持搜索文本
升级点阐述: 云蝠智能的RAG(检索增强生成)知识中心新增了强大的搜索文本支持功能。现在,系统不仅能够被动地匹配关键词,还能主动对知识库内的文档、问答对进行深入的语义搜索,快速定位与用户问题最相关的文本片段。
价值解读:
-
回答有据可依: 结合生成式模型,RAG让AI的每一句回答都基于企业最新的、经过验证的知识内容,大幅降低了“胡言乱语”的风险,增强了信息的准确性与可信度。
-
效率倍增: 语义搜索让AI在庞大的知识库中“秒级”锁定有效信息,尤其适用于产品信息、政策法规、技术文档等复杂内容的查询,使得回答既快又准。
四、对话主动权移交:支持关闭开场白
尊重用户,从第一句话开始。云蝠智能在对话流程上做出了一个极具用户洞察的调整。
升级点阐述: 新版本支持在特定场景下关闭AI预设的开场白。这意味着,在电话接通的瞬间,对话的优先权可以直接交给用户,AI将进入倾听模式,根据用户的第一句话来开启整个对话流程。
价值解读:
-
用户体验至上: 对于反感标准化营销开场白的用户,或是在客服场景中希望快速陈述问题的用户,这一功能体现了对其习惯和时间的尊重,能有效提升对话的“初印象”分数。
-
场景适应性更强: 在回访、满意度调研等以用户反馈为主的场景中,关闭开场白,直接邀请用户发言,能收集到更真实、更即时的第一手信息,让调研结果更具价值。
五、效果评估透明化:智能打分5.0,全站展示总分与平均分及明细
衡量是为了更好地优化。云蝠智能“智能打分”系统升级至5.0版本,在评估体系的透明度和精细化程度上迈出了一大步。
升级点阐述: 新版打分系统不仅为每一次通话提供详细的评分明细,更在全站层面展示了整体通话的总分和平均分。管理者可以一目了然地把握AI呼叫团队的整体表现水平,同时又能下钻到单次通话,查看在意图识别、回应相关性、话术规范等维度的具体得分。
价值解读:
-
管理视野宏观化: 总分与平均分为管理者提供了直观的效能仪表盘,便于进行横向(不同时期、不同项目)对比与趋势分析,支撑战略决策。
-
优化方向精准化: 详细的评分明细如同一位永不疲倦的质检员,精准指出每一次对话的亮点与不足。是开场白不够吸引人?还是对某个特定问题的回答有偏差?这些数据将成为优化话术、训练模型、提升团队表现的最直接依据。
总结
云蝠智能的此次升级,是一次从“工具”到“伙伴”的演进。它通过更强大的模型带来更自然的交流,通过更协同的智能提供更专业的服务,通过更精准的知识检索保障更可靠的信息,通过更灵活的流程设置体现更人性化的尊重,最后通过更透明的评估体系实现更科学的持续优化。
392

被折叠的 条评论
为什么被折叠?



