财务造假判断+面试+车牌识别

一、线上赛题

  • 题目:判断企业财务是否造假

  • 难点:类别不均衡,造假类远少于非造假类,大概比例为70:1

  • 主要步骤

  • 1.数据预处理
    一共36列,其中公司代码列作为索引,没有使用。fake列作为预测的标签列。还剩下34列。查看基本信息,发现投资收益利润比有两条缺失值,进行删除。

  • 2.对于数据分类不平衡的问题,通常可以通过欠采样、过采样或者加入惩罚函数的方法来解决。

    欠采样是指通过减少大类样本的数量来平衡数据集,在本例中,需要减少正常样本数量,但这样需要人为选定非造假样本,对原有数据分布有较大影响。
    过采样则是通过增加稀有样本的数量来平衡数据集,而不是去除丰富类别的样本的数量。本例中,进行了上采样,利用STMOE算法

  • 3.特征选择

    (1)首先进行了PCA降维,方差比设为0.95,得到26维,但是结果不好,可解释性也不强
    (2)查看特征之间相关性,剔除一些相关程度大并且相关变量多的变量。(资产负债率(Asset_lia_ratio)与流动比率(Curr_ratio)、速动比率(Quick_ratio)、总资产报酬率(ROA)等之间的负相关性较高),找到与fake有强相关的特征列,审计意见、造假前一年是否亏损、其他应收款占流动资产比例、销售毛利率、预付款

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页