★ZZULIOJ--1868(动态规划--好题)

1868: UP UP UP!

Time Limit: 1 Sec   Memory Limit: 128 MB
Submit: 76   Solved: 20

Submit Status Web Board

Description

题意很简单,给你长度为n的序列,找出有多少个不同的长度为m的严格上升子序列。(PS:相同子序列的定义为,每一个元素对应的下标都相同)

Input

输入数据第一行是个正整数T,表示总共有T组测试数据(T <= 5); 每组数据第一行为n和m,以空格隔开(1 <= n <= 100, 1 <= m <= n); 第二行为n个数,第i个数ai依次代表序列中的每个元素(1 <= ai <= 10^9);

Output

对于每组数据,输出一行Case #x: y,x表示当前测试数据的序号(从1开始),y表示结果。 需要注意的是,结果有可能很大,你需要将结果对1000000007(10^9+7)取余。

Sample Input

23 21 2 33 23 2 1

Sample Output

Case #1: 3Case #2: 0



解题思路:dp[i][j]代表以i结尾长度为j的严格上升子序列有多少种,

那么就是dp[i][j]+=dp[k][j-1],k<i&&a[k]<a[i].用dfs会超时


代码如下:

#include<stdio.h>
#include<string.h>
int num[110];
long long  dp[110][110];
int main(){
	int t,n,m,i,j,cas,k;
	long long sum;
	scanf("%d",&t);
	cas=1;
	while(t--){
		sum=0;
		scanf("%d%d",&n,&m);
        for(i=1;i<=n;i++){
        	scanf("%d",&num[i]);
        }
        memset(dp,0,sizeof(dp));
        for(i=1;i<=n;i++){
        	dp[i][1]=1;
        	dp[i][0]=0;
        	for(j=1;j<=i&&j<=m;j++){
        		for(k=1;k<i;k++){
        			if(num[i]>num[k]){
        				dp[i][j]=(dp[i][j]+dp[k][j-1])%(1000000000+7);
        			}
        		}
        	}
            sum=(sum+dp[i][m])%(1000000000+7);
		}
        printf("Case #%d: %lld\n",cas++,sum);
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值