智能电网中多时段多公司需求响应管理的博弈理论框架
利用博弈论建立了一个考虑公司和消费者之间相互作用的多时期多公司需求响应框架。
在Stackelberg博弈中建立了相互作用的模型,公司设定价格,而消费者选择他们的需求作为回应。
证明了潜在博弈具有一个独特的均衡,公司的收益最大化而消费者的效用最大化受当地约束。
给出了所有参与方的最优策略的封闭表达式。
构造了一个具有唯一纯策略纳什均衡的权力分配博弈,并给出了该博弈的封闭形式表达式。
进一步提供了一种快速分布的算法来计算所有的最优策略只使用局部信息。
也研究在周期的数量(时间范围的细分和消费者的数量变化的影响。
当参与需求响应的消费者数量超过某一阈值时,能够找到一个合适的公司与消费者比例。
为消费者所需的最低预算提供了一个条件,并使用现实数据进行案例研究,其中显示了高达30%的潜在节约和具有低波动性的均衡价格
YID:66200637297336956
SourseCode
智能电网中多时段多公司需求响应管理的博弈理论框架
在智能电网中,多时段多公司需求响应是一项重要的管理任务。为了实现优化的需求响应,需要建立一个考虑公司和消费者之间相互作用的博弈理论框架。本文将介绍一个基于博弈论的框架,用于研究多时期多公司需求响应的管理问题。
在这个博弈理论框架中,我们假设存在多家公司和众多的消费者。公司通过设定价格来引导消费者的需求响应,而消费者则根据公司设定的价格来作出自己的需求选择。我们采用Stackelberg博弈模型来描述公司和消费者之间的相互作用。
在Stackelberg博弈中,公司是博弈的领导者,消费者是跟随者。公司首先设定价格,然后消费者根据公司设定的价格来选择他们的需求作为回应。我们证明了在这个博弈中存在一个独特的均衡点,使得公司的收益最大化,而消费者的效用最大化受当地约束。
我们给出了所有参与方的最优策略的封闭表达式,这使得我们可以准确地计算出每个参与方的最优策略。同时,我们还构造了一个具有唯一纯策略纳什均衡的权力分配博弈,并给出了该博弈的封闭形式表达式。这为我们提供了一个更加简化的方法来计算所有的最优策略,只需使用局部信息即可。
此外,我们还研究了周期的数量对需求响应的影响。周期的数量可以通过细分时间范围和改变消费者的数量来调节。我们发现当参与需求响应的消费者数量超过某一阈值时,可以找到一个合适的公司与消费者比例,以实现良好的需求响应效果。
最后,我们给出了消费者所需的最低预算的条件。通过使用现实数据进行案例研究,我们展示了在实际应用中,通过多时段多公司需求响应管理的博弈理论框架,可以实现高达30%的潜在节约和低波动性的均衡价格。
综上所述,本文基于博弈论建立了一个考虑公司和消费者之间相互作用的多时期多公司需求响应框架。通过构建博弈模型和分析最优策略,我们能够实现优化的需求响应管理,为智能电网的运营提供了重要的理论支持。该框架在实际应用中具有广泛的应用前景,可以为电力行业的发展和智能电网的建设做出积极贡献。
【相关代码,程序地址】:http://lanzoup.cn/637297336956.html