C++回溯算法详解

回溯算法是一种通过试错寻找解的通用方法,适用于组合、排列、子集、棋盘类等问题(如八皇后、数独等)。其核心是深度优先搜索配合状态回退机制。

核心要素
  1. 路径:已做出的选择
  2. 选择列表:当前可选的元素
  3. 结束条件:到达决策树底层时的终止条件
算法框架
void backtrack(路径, 选择列表) {
    if (满足结束条件) {
        记录结果
        return;
    }
    
    for (选择 : 选择列表) {
        做出选择
        backtrack(新路径, 新选择列表)
        撤销选择
    }
}

经典示例:全排列问题

给定不重复数字集合,返回所有可能的排列

#include <vector>
using namespace std;

vector<vector<int>> permute(vector<int>& nums) {
    vector<vector<int>> res;
    vector<int> path;
    vector<bool> used(nums.size(), false);
    
    function<void()> backtrack = [&]() {
        if (path.size() == nums.size()) {
            res.push_back(path);
            return;
        }
        
        for (int i = 0; i < nums.size(); ++i) {
            if (used[i]) continue;  // 剪枝:跳过已使用的元素
            used[i] = true;         // 做出选择
            path.push_back(nums[i]);
            backtrack();            // 递归进入下一层
            path.pop_back();        // 撤销选择
            used[i] = false;
        }
    };
    
    backtrack();
    return res;
}

关键点解析
  1. 状态维护used数组标记已选元素
  2. 路径管理path保存当前组合
  3. 剪枝优化:通过条件判断跳过无效分支
  4. 时间复杂度:$$O(n \times n!)$$,其中n为元素个数

应用场景

  1. 组合问题:$C(n,k)$
  2. 切割问题(字符串分割)
  3. 子集问题
  4. 棋盘问题(N皇后、数独)
  5. 排列问题
优化技巧
  1. 记忆化剪枝:记录已尝试路径
  2. 排序预处理:便于跳过重复解
  3. 可行性剪枝:提前终止无效路径
  4. 双向搜索:从起点和终点同时进行搜索

回溯算法通过系统地遍历解空间,配合剪枝策略,能在合理时间内解决许多组合优化问题,但需注意其指数级复杂度特性,对于大规模问题需结合其他优化技术。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值