回溯算法是一种通过试错寻找解的通用方法,适用于组合、排列、子集、棋盘类等问题(如八皇后、数独等)。其核心是深度优先搜索配合状态回退机制。
核心要素
- 路径:已做出的选择
- 选择列表:当前可选的元素
- 结束条件:到达决策树底层时的终止条件
算法框架
void backtrack(路径, 选择列表) {
if (满足结束条件) {
记录结果
return;
}
for (选择 : 选择列表) {
做出选择
backtrack(新路径, 新选择列表)
撤销选择
}
}
经典示例:全排列问题
给定不重复数字集合,返回所有可能的排列
#include <vector>
using namespace std;
vector<vector<int>> permute(vector<int>& nums) {
vector<vector<int>> res;
vector<int> path;
vector<bool> used(nums.size(), false);
function<void()> backtrack = [&]() {
if (path.size() == nums.size()) {
res.push_back(path);
return;
}
for (int i = 0; i < nums.size(); ++i) {
if (used[i]) continue; // 剪枝:跳过已使用的元素
used[i] = true; // 做出选择
path.push_back(nums[i]);
backtrack(); // 递归进入下一层
path.pop_back(); // 撤销选择
used[i] = false;
}
};
backtrack();
return res;
}
关键点解析
- 状态维护:
used
数组标记已选元素 - 路径管理:
path
保存当前组合 - 剪枝优化:通过条件判断跳过无效分支
- 时间复杂度:$$O(n \times n!)$$,其中n为元素个数
应用场景
- 组合问题:$C(n,k)$
- 切割问题(字符串分割)
- 子集问题
- 棋盘问题(N皇后、数独)
- 排列问题
优化技巧
- 记忆化剪枝:记录已尝试路径
- 排序预处理:便于跳过重复解
- 可行性剪枝:提前终止无效路径
- 双向搜索:从起点和终点同时进行搜索
回溯算法通过系统地遍历解空间,配合剪枝策略,能在合理时间内解决许多组合优化问题,但需注意其指数级复杂度特性,对于大规模问题需结合其他优化技术。