力扣算法题-19.秋叶收藏集 C语言实现

题目

小扣出去秋游,途中收集了一些红叶和黄叶,他利用这些叶子初步整理了一份秋叶收藏集 leaves, 字符串 leaves 仅包含小写字符 r 和 y, 其中字符 r 表示一片红叶,字符 y 表示一片黄叶。
出于美观整齐的考虑,小扣想要将收藏集中树叶的排列调整成「红、黄、红」三部分。每部分树叶数量可以不相等,但均需大于等于 1。每次调整操作,小扣可以将一片红叶替换成黄叶或者将一片黄叶替换成红叶。请问小扣最少需要多少次调整操作才能将秋叶收藏集调整完毕。

示例 1:

输入:leaves = “rrryyyrryyyrr”

输出:2

解释:调整两次,将中间的两片红叶替换成黄叶,得到 “rrryyyyyyyyrr”

示例 2:

输入:leaves = “ryr”

输出:0

解释:已符合要求,不需要额外操作

提示:

3 <= leaves.length <= 10^5
leaves 中只包含字符 ‘r’ 和字符 ‘y’

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/UlBDOe

思路1

首先想到的是一个比较笨拙的方法,暴力枚举。

设第二部分的开头位置为i,范围 [1,ilen-1),
设第三部分的开头位置为j,范围 [i+1,ilen)。
按照i,j的值计算每种场景下的调整次数,取最小值。

但因为计算循环过多,所以程序提交会超时,仅作为一种思路参考。

程序1

int minimumOperations(char* leaves){
    int i,j,k,ilen,icnt,imin;
    ilen = strlen(leaves);
    imin = ilen;
    /*第二部分的开头位置是i*/
    for(i = 1; i < ilen - 1; i++){
        /*第三部分的开头位置是j*/
        for(j = i+1; j < ilen; j++){
            icnt = 0;
            /*计数第一部分需要的调整次数*/
            for(k=0;k<i;k++){
                if(leaves[k] != 'r'){
                    icnt++;
                }
            }
            /*计数第二部分需要的调整次数*/
            for(;k<j;k++){
                if(leaves[k] != 'y'){
                    icnt++;
                }
            }
            /*计数第三部分需要的调整次数*/
            for(;k<ilen;k++){
                if(leaves[k] != 'r'){
                    icnt++;
                }
            }
            imin = imin<icnt?imin:icnt;
        }
    }
    return imin;
}

思路2

动态规划。
设 全红为r,红黄为ry,红黄红为ryr 三种状态为0,1,2;

1、序列号小于3,初始化前三个字符对应位置的值,状态0,1,2 的数据情况;
序号小于状态时,直接取当前序列号状态号-1的值即可;
序列号等于状态时,取当前状态的上个序列号的值+非匹配符号;
序列号大于状态时,按照如下2列出公式处理即可。
2、序列号大于等于3的情况,
状态0(r) = 上个状态0 + 非r (非r为1,r为0)
状态1 (ry) = 上个状态0 + 非y(非y为1,y为0) 或者 上个状态1 + 非y (两种情况选最小值,获取最小调整次数)
状态2 (ryr) = 上个状态1 + 非r (非r为1,r为0) 或者 上个状态2 + 非r (两种情况选最小值,获取最小调整次数)

程序2

int minimumOperations(char* leaves){
    int i,ilen,inred,inyellow;
    int* a[3];
    ilen = strlen(leaves);
    for(i=0;i<3;i++){
        a[i] = (int*)calloc(ilen,sizeof(int));
    }
    for(i=0;i<ilen;i++){
        inred = (leaves[i] != 'r'); 
        inyellow = (leaves[i] != 'y');
        if(i<1){
            a[0][i] = inred;
            a[1][i] = a[0][i];
            a[2][i] = a[1][i];
        }else if(i<2){
            a[0][i] = a[0][i-1] + inred;
            a[1][i] = a[1][i-1] + inyellow;
            a[2][i] = a[1][i];
        }else if(i<3){
            a[0][i] = a[0][i-1] + inred;
            a[1][i] = (a[0][i-1]<a[1][i-1]?a[0][i-1]:a[1][i-1]) + inyellow;
            a[2][i] = a[2][i-1] + inred;
        }else{
            a[0][i] = a[0][i-1] + inred;
            a[1][i] = (a[0][i-1]<a[1][i-1]?a[0][i-1]:a[1][i-1]) + inyellow;
            a[2][i] = (a[1][i-1]<a[2][i-1]?a[1][i-1]:a[2][i-1]) + inred;
        }
    }
    return a[2][i-1];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值