题目
小扣出去秋游,途中收集了一些红叶和黄叶,他利用这些叶子初步整理了一份秋叶收藏集 leaves, 字符串 leaves 仅包含小写字符 r 和 y, 其中字符 r 表示一片红叶,字符 y 表示一片黄叶。
出于美观整齐的考虑,小扣想要将收藏集中树叶的排列调整成「红、黄、红」三部分。每部分树叶数量可以不相等,但均需大于等于 1。每次调整操作,小扣可以将一片红叶替换成黄叶或者将一片黄叶替换成红叶。请问小扣最少需要多少次调整操作才能将秋叶收藏集调整完毕。
示例 1:
输入:leaves = “rrryyyrryyyrr”
输出:2
解释:调整两次,将中间的两片红叶替换成黄叶,得到 “rrryyyyyyyyrr”
示例 2:
输入:leaves = “ryr”
输出:0
解释:已符合要求,不需要额外操作
提示:
3 <= leaves.length <= 10^5
leaves 中只包含字符 ‘r’ 和字符 ‘y’
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/UlBDOe
思路1
首先想到的是一个比较笨拙的方法,暴力枚举。
设第二部分的开头位置为i,范围 [1,ilen-1),
设第三部分的开头位置为j,范围 [i+1,ilen)。
按照i,j的值计算每种场景下的调整次数,取最小值。
但因为计算循环过多,所以程序提交会超时,仅作为一种思路参考。
程序1
int minimumOperations(char* leaves){
int i,j,k,ilen,icnt,imin;
ilen = strlen(leaves);
imin = ilen;
/*第二部分的开头位置是i*/
for(i = 1; i < ilen - 1; i++){
/*第三部分的开头位置是j*/
for(j = i+1; j < ilen; j++){
icnt = 0;
/*计数第一部分需要的调整次数*/
for(k=0;k<i;k++){
if(leaves[k] != 'r'){
icnt++;
}
}
/*计数第二部分需要的调整次数*/
for(;k<j;k++){
if(leaves[k] != 'y'){
icnt++;
}
}
/*计数第三部分需要的调整次数*/
for(;k<ilen;k++){
if(leaves[k] != 'r'){
icnt++;
}
}
imin = imin<icnt?imin:icnt;
}
}
return imin;
}
思路2
动态规划。
设 全红为r,红黄为ry,红黄红为ryr 三种状态为0,1,2;
1、序列号小于3,初始化前三个字符对应位置的值,状态0,1,2 的数据情况;
序号小于状态时,直接取当前序列号状态号-1的值即可;
序列号等于状态时,取当前状态的上个序列号的值+非匹配符号;
序列号大于状态时,按照如下2列出公式处理即可。
2、序列号大于等于3的情况,
状态0(r) = 上个状态0 + 非r (非r为1,r为0)
状态1 (ry) = 上个状态0 + 非y(非y为1,y为0) 或者 上个状态1 + 非y (两种情况选最小值,获取最小调整次数)
状态2 (ryr) = 上个状态1 + 非r (非r为1,r为0) 或者 上个状态2 + 非r (两种情况选最小值,获取最小调整次数)
程序2
int minimumOperations(char* leaves){
int i,ilen,inred,inyellow;
int* a[3];
ilen = strlen(leaves);
for(i=0;i<3;i++){
a[i] = (int*)calloc(ilen,sizeof(int));
}
for(i=0;i<ilen;i++){
inred = (leaves[i] != 'r');
inyellow = (leaves[i] != 'y');
if(i<1){
a[0][i] = inred;
a[1][i] = a[0][i];
a[2][i] = a[1][i];
}else if(i<2){
a[0][i] = a[0][i-1] + inred;
a[1][i] = a[1][i-1] + inyellow;
a[2][i] = a[1][i];
}else if(i<3){
a[0][i] = a[0][i-1] + inred;
a[1][i] = (a[0][i-1]<a[1][i-1]?a[0][i-1]:a[1][i-1]) + inyellow;
a[2][i] = a[2][i-1] + inred;
}else{
a[0][i] = a[0][i-1] + inred;
a[1][i] = (a[0][i-1]<a[1][i-1]?a[0][i-1]:a[1][i-1]) + inyellow;
a[2][i] = (a[1][i-1]<a[2][i-1]?a[1][i-1]:a[2][i-1]) + inred;
}
}
return a[2][i-1];
}