JDK1.8 HashMap底层实现原理

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/MDreamlove/article/details/80333136

底层实现

数组+链表+红黑树
这里写图片描述

一些重要的变量

//默认初始容量16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; 
//容量最大值
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认加载因子0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//树化的阈值,当桶中链表节点数大于8时,将链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
//红黑树退化为链表的阈值,当桶中红黑树节点数小于6时,将红黑树转换为链表
static final int UNTREEIFY_THRESHOLD = 6;
//最小的树化容量,进行树化的时候,还有一次判断,只有键值对数量大于64时才会发生转换,
//这是为了避免在哈希表建立初期,多个键值对恰好被放入了同一个链表而导致不必要的转化
static final int MIN_TREEIFY_CAPACITY = 64;

get操作:get(K)

1.判断表是否为空或者待查找的桶不为空
2.首先检查待查找的桶的第一个元素是否是要找的元素,如果是直接返回
3.桶内红黑树,则调用getTreeNode()查找红黑树
4.桶内是链表,遍历链表寻找节点

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //表不为空&&表长大于0&&待查找的桶不为空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //首先检查桶中的第一个节点,如果相等,则直接返回
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                //如果桶中是树结构
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //桶中是链表,则遍历链表如果找到则直接返回
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

put操作:put(K,V)

1.如果表为空或者表的长度为0,调用resize初始化表,为表分配空间
2.①二次散列处的桶为空,直接插入元素
②桶不为空
a)桶处的第一个节点与待插入节点的哈希相同且key“相等”,直接赋给变量e
b)桶中是红黑树,调用putTreeVal插入红黑树中
c)桶中是链表,遍历链表,如果其中存在相同的key,则赋给变量e;不存在则尾插法加入链表,并判断节点数是否大于8,如果大于8则调用treeifyBin()转化为红黑树
3.①e不为空,替换其中的value值,并返回旧的value值
②e为空,表大小+1,判断是否达到了阈值,如果达到了则需要扩容
这里写图片描述

public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
}
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //如果表为空或者表的容量为0,resize初始化表
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //根据hash得到在表中索引位置的桶,如果桶为空,则将节点直接插入桶中
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        //桶不为空
        else {
            Node<K,V> e; K k;
            //首先判断桶中第一个节点的hash与待插入元素的key的hash值是否相同且key是否"相等",如果相等,赋给变量e
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //是树节点,则调用putTreeVal添加到红黑树中
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //否则是链表,遍历链表,如果不存在相同的key,则插入链表尾部,并且判断节点数量是否大于树化阈值,如果大于则转换为红黑树;如果存在相同的key,break,遍历链表结束
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //e不为空表示存在相同的key,替换value并返回旧值
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        //链表元素增加,并判断是否大于阈值,如果大于,则扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

链表转化为红黑树:treeifyBin()

    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        //如果表为空或者表的长度小于树化的容量,resize()扩容而不是树化
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            //hd是转换为树节点后桶中的头节点   tl记录上一个遍历的节点
            TreeNode<K,V> hd = null, tl = null;
            do {
                //将hash位置处的桶中的每个节点包装成树节点,p记录当前遍历的节点
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
                //循环将桶中每个节点替换为树节点,最终结果就是链表转换为双向链表,prev指向前一个节点,next指向后一个节点
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)  
                    //将双向链表转化为红黑树
                    hd.treeify(tab);
            }
    }

扩容操作:resize()

该方法进行表的初始化或者扩容操作
其中扩容操作并没有进行重哈希计算桶中元素在新表中的位置,而是根据原位置+数组长度/不+数组长度确定其在新表中的位置,即省去了计算hash的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。

(e.hash & oldCap) 得到的是元素的在新数组中的位置是否需要移动
e.hash & (oldCap - 1)得到的是元素在原数组中的位置,那么 e.hash & oldCap计算的就是e.hash的高一位,因为oldCap*2 = newCap,计算e.hash & (newCap - 1)得到的就是在新数组中的位置,与旧表中的位置计算相比,差别就是最高位,所以通过e.hash & oldCap计算最高位,判断是否需要移动

eg:
e.hash = 10 ———— 0000 1010
oldCap = 16 ———— 0001 0000 比较高位的第一位0
&             = 0 ———— 0000 0000
结论:元素位置在扩容后数组中的位置没有发生改变
e.hash = 17 ———— 0001 0001
oldCap = 16 ———— 0001 0000 比较高位的第一位 1
&             = 1 ———— 0001 0000
结论:元素位置在扩容后数组中的位置发生了改变,新的下标位置是原下标位置+原数组长度
元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:
这里写图片描述
因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图:
这里写图片描述

    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        //旧表的容量
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //旧的阈值
        int oldThr = threshold;
        //记录新表的容量大小和阈值
        int newCap, newThr = 0;
        //旧表容量大于0,表示被初始化过,需要执行的是扩容操作
        if (oldCap > 0) {
            //如果旧表容量大于容量最大值,那么阈值为Interger的最大值,即提升阈值,不再进行扩容,返回旧表
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //否则,扩容为原先容量的1倍,阈值也扩容为原来的一倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        //oldCap不大于0,表示该表未被初始化,需要进行初始化,需要确认表的大小及阈值
        //旧表容量为0,阈值大于0,则用阈值大小作为容量
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        //否则,表的容量为默认初始容量16,阈值为默认初始容量16*加载因子0.75
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //如果新表阈值为0,则利用新容量*加载因子计算
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        //将新的阈值赋给HashMap的阈值成员变量
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        //新建数组,大小为newCap
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        //将新建的表赋给HashMap的表成员变量
        table = newTab;
        //如果旧表不为空,则需要进行扩容
        if (oldTab != null) {
            //变量旧表中的每一个桶
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                //将不为空的桶重hash到新表中
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    //桶中只有一个元素,将该元素放到新表的桶中
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    //桶中存放的是红黑树,复杂这里不做讲解
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    //桶中存放的是链表
                    //并没有进行
                    else { // preserve order
                        //根据变化的最高位的不同,也就是0或者1,将链表拆分开
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            //最高位为0,则将节点加入loTail.next
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            //最高位为1,则将节点加入hiTail.next
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        //在新数组的位置与原数组的位置相同,新数组的桶直接指向LoHead
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        //在新数组的位置是原数组的位置+旧数组长度,新数组的桶直接指向hiHead
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        //返回扩容后的新数组或者初始化后的数组
        return newTab;
    }

总结

与JDK 1.7的HashMap相比,1.8的HashMap的性能可以说是提升了不少。
如果哈希冲突严重,最坏的情况下,所有的key都映射到同一个桶中,这样hashmap就退化成了一个链表——查找时间从O(1)到O(n)。
针对这种情况,JDK 1.8 中引入了红黑树(查找时间复杂度为 O(logn))来优化这个问题,红黑树是许多平衡搜索树中的一种,可以保证在最坏的情况下基本动态集合操作的时间复杂度为O(logn),n为节点个数。
同时在扩容的时候,重哈希的计算方式大大简化,仅仅通过计算高出来的一位是1还是0进行拆分,如果是1,则位于新数组中相同的位置+旧数组长度的位置;如果是0,则位于新数组中相同的位置。不仅计算方式简单,而且还把之前的冲突分散到其他的桶里。

展开阅读全文

没有更多推荐了,返回首页