题目如下:
你有一架天平和 N 个砝码,这 N 个砝码重量依次是 W1,W2,⋅⋅⋅,WN。
请你计算一共可以称出多少种不同的正整数重量?
注意砝码可以放在天平两边。
输入格式
输入的第一行包含一个整数 N。
第二行包含 N 个整数:W1,W2,W3,⋅⋅⋅,WN。
输出格式
输出一个整数代表答案。
数据范围
对于 50% 的评测用例,1≤N≤15。
对于所有评测用例,1≤N≤100,N 个砝码总重不超过 105。
输入样例:
3
1 4 6
输出样例:
10
样例解释
能称出的 10 种重量是:1、2、3、4、5、6、7、9、10、11。
1 = 1;
2 = 6 − 4 (天平一边放 6,另一边放 4);
3 = 4 − 1;
4 = 4;
5 = 6 − 1;
6 = 6;
7 = 1 + 6;
9 = 4 + 6 − 1;
10 = 4 + 6;
11 = 1 + 4 + 6。
这道题考试的时候,我就是用DP写的不过写错了,一看题目就是有限制的选择问题,典型的背包问题,不过它的状态表示有点特殊,是bool类型,我在学习了大佬的思路后才发现自己的方法太复杂还同意错,DP分析如下:
由实际含义可以,f[i][j]=f[i][-j] 因为可以通过镜像的操作而得到,故而f[i][j-w]=f[i][w-j]=f[i][abs(j-w)]。就避免了数组下标为负数的情况
#include <bits/stdc++.h>
using namespace std;
const int N = 110, M = 2e5 + 10;
int sum;
int n;
int w[N];
bool f[N][M];
int main() {
cin>>n;
for (int i = 1; i <= n; i++)
{
scanf("%d", &w[i]);
sum+=w[i];
}
f[0][0]=true;
for (int i = 1; i <= n;i++)
for (int j = 0; j <=sum;j++)
f[i][j]=f[i-1][j]||f[i-1][j+w[i]]||f[i-1][abs(j-w[i])];
//只要有一个非空,f[i][j]就非空
int ans = 0;
for (int i = 1; i <=sum;i++)
if(f[n][i])ans++;//不为零说明可以选出这个质量的砝码
cout << ans;
return 0;
}
加油!!