给定一个天平和n种砝码,每种砝码的数量无限,判断是否能测量任意重量的砝码

 

题目

给定几种重量的砝码,数量不限,判断是否可以称出任意重量的物品。
输入规则,第一行输入一个整数n,表示有n种砝码;然后挨个输入每个砝码的重量。可以称重的物品都是整数。能,就输出YES;不能,输出NO。

示例1
输入:

1
1

输出:

YES

第一个1是有一种重量的砝码,第二个1是这个砝码是多重。这样肯定可以称出任意重量的物品。

示例2
输入:

2
2 3

输出:

YES

第一个2是有两种重量的砝码,第二行2 3表示每种砝码重量是2和3,那么也是可以称出任意重量的物品。

示例3
输入:

2
2 4

输出:

NO

这一组只能得到2N物品的重量,无法称出奇数物品的重量。

 

思路:

如果给定砝码种包含重量为1的砝码,显然一定可以称出任意重量,如果若干个砝码经过换算能得到重量 1 ,则也可以称出任意重量的砝码。
比如3,5,2x3-5=1,显然我们可以通过3,5两个砝码称出任意的重量(例如,将2个3kg的砝码看作为一组,称为A;一个5kg的砝码看作一组,称其为B;   一个A放在天平左边,一个B放在右边,则可以称出质量为1kg的货物;2个A放在天平左边,2个B放在右边,则可以称出质量为2kg的货物,...............)

(之前,我的思路的局限: 只要有两种砝码的质量差为1就可以,忽视了多个砝码的组合运算!!!)

那么满足什么条件的砝码可以得到重量1呢?

设砝码的质量为a1,a2,...,an, 相应的个数为x1,x2,...,xna1*x1+a2*x2+…+an*xn = 1 有整数解的时候,则这组砝码可以称出任意质量的物体;

 

网友说需要用到数学定理:

如果a1,a2,…,an是正整数,当且仅当 d =(a1,a2,……,an)能整除c的时候,方程a1*x1+a2*x2+…+an*xn=c有整数解,另外当存在一个解的时候,那么方程有无穷多个解。

-->(a1,a2,……,an)的最大公约数为1时有解。

 

我们需要解决的问题,等价于n元一次方程a1x1+a2x2+…+an*xn=1是否有解。也就是求给定的n种砝码重量的最大公约数是否为1.
即:当a1,a2,a3,a4,…an 这n个正整数的最大公约数是1时,他们可以表示任意的重量。
(显而易见: 如果两个数的最大公约数是1 ,那么包含这两个数正整数序列的最大公约数也一定是1)。

 

可以使用辗转相除法求两个数的最大公约数。

#include<iostream>

using namespace std;

int main()
{
    int n;
    while (cin >> n)
    {
        int imax, imin;
        int num = 0;
        cin >> num;
        imin = num;//先让imin等于第一个数
        if (num == 1)
        {

            cout << "YES" << endl;
            break;
        }
        for(int i=1;i<n;++i)
        {
            cin >> num;
            if (num == 1)
            {
                cout << "YES" << endl;
                return 0;
            }
            imax = num;
            if (imax < imin)//imax总是大于imin
                swap(imax,imin);
            while (imin != 0)//辗转相除求最大公约数
            {
                int rest = imax % imin;
                imax = imin;
                imin = rest;
            }
            if (imax == 1)//余数为1时返回
            {
                cout << "YES" << endl;
                return 0;
            }
            imin = imax;//imin等于前两个数的最大公约数
        }
        cout << "NO" << endl;
        return 0;
    }
    return 0;
}

 


Ref:

https://blog.csdn.net/weixin_43327696/article/details/105956767

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

First Snowflakes

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值