目录
2. AUTOSAR Classic & Adaptive软件层
1. 实时监控服务 (RealTimeMonitoringService.c)
2. 故障预测服务 (FaultPredictionService.c)
3. 维护建议服务 (MaintenanceRecommendationService.c)
基于预测性维护(Predictive Maintenance)的动力总成健康管理系统。该项目旨在通过实时监控动力总成的关键部件状态,并结合大数据分析和机器学习技术,提前预测潜在故障,优化维护计划,减少非计划停机时间,提升车辆的可靠性和用户体验。
项目背景
在现代汽车中,动力总成系统(包括发动机、电动机、变速器、电池等)是车辆性能的核心组成部分。然而,随着车辆使用时间的增加,动力总成的各个部件可能会出现磨损、老化等问题,导致性能下降甚至故障。传统的定期维护方式虽然可以在一定程度上预防故障,但往往无法精确预测故障发生的时间,容易造成过度维护或维护不足的问题。
因此,开发一个基于预测性维护的动力总成健康管理系统,能够实时监控动力总成的关键参数,结合历史数据和机器学习算法,提前预测潜在故障,优化维护计划,不仅可以提高系统的可靠性,还可以降低维护成本,提升用户体验。
项目目标
- 实时监控&#x