邮局选址问题

邮局选址问题

题目描述

一条直线上有居民点,邮局只能建在居民点上。给定一个有序整形数组arr,每个值表示居民点的一维坐标,再给定一个正数num,表示邮局数量。

选择num个居民点建立num个邮局,使所有的居民点到邮局的总距离最短,返回最短的总距离。

输入描述:

第一行有两个整数N,num。分别表示居民点的数量,要建的邮局数量。
接下来一行N个整数表示邮局的坐标。保证坐标递增

输出描述:

输出一个整数表示答案

示例1
输入
6 2
1 2 3 4 5 1000
输出
6
说明

第一个邮局建立在3位置,第二个邮局建立在1000位置。那么1位置到邮局的距离为2,2位置到邮局距离为1,3位置到邮局的距离为0,4位置到邮局的距离为1,5位置到邮局的距离为2,1000位置到邮局的距离为0.
这种方案下的总距离为6。

备注:

1 ⩽ N ⩽ 3000 1 \leqslant N \leqslant 3000 1N3000
1 ⩽ n u m ⩽ N 1 \leqslant num \leqslant N 1numN

1 ⩽ 邮局坐标 ⩽ 10000 1 \leqslant \text {邮局坐标} \leqslant 10000 1邮局坐标10000


题解:

动态规划。首先从简单的模型开始:

若我们需要在 n 个点中选一个位置安放邮局,怎么放呢?坐标的中位数即可,奇数为中间位置,偶数任意两个中间位置之一即可。

回到这题上来,本质是对 n 个地址进行划分,划分成 num 段,每段一个邮局,求最小的距离。

那么 dp 方程就很明显了:设 f [ i ] [ j ] f[i][j] f[i][j] 表示 a[0…j] 安放 i+1 个邮局的最小距离,转移方程为:

f [ i ] [ j ] = m i n { f [ i − 1 ] [ k ] + c o s t [ k + 1 ] [ j ] ( 0 ⩽ k < n ) } f[i][j] = min \{ f[i-1][k] + cost[k + 1][j] (0 \leqslant k < n) \} f[i][j]=min{f[i1][k]+cost[k+1][j](0k<n)}

其中 c o s t [ k + 1 ] [ j ] cost[k+1][j] cost[k+1][j] 表示在 a [ k + 1... j ] a[k+1...j] a[k+1...j] 之中安放一个邮局的距离。

#include <cstdio>
#include <algorithm>

using namespace std;

const int N = 3001;

int n, num;
int w[N][N];
int x[N];
int f[N][N];

int main(void) {
    scanf("%d%d", &n, &num);
    for ( int i = 0; i < n; ++i )
        scanf("%d", x + i);
    for ( int i = 0; i < n; ++i ) {
        for ( int j = i + 1; j < n; ++j )
            w[i][j] = w[i][j - 1] + x[j] - x[i + j >> 1];
        f[0][i] = w[0][i];
    }
    for ( int i = 1; i < num; ++i ) {
        for ( int j = i + 1; j < n; ++j ) {
            f[i][j] = 1 << 30;
            for ( int k = 0; k <= j; ++k )
                f[i][j] = min( f[i][j], f[i - 1][k] + w[k + 1][j]);
        }
    }
    printf("%d\n", f[num - 1][n - 1]);
    return 0;
}

这样的话,对于该动态规划方程,时间复杂度为 O ( n 2 ∗ n u m ) O(n^2 * num) O(n2num),在本题上是无法通过的。。。

优化:

我们发现在求解 f [ i ] [ j ] f[i][j] f[i][j] 时,几乎枚举了所有的 f [ i − 1 ] [ 0... j ] f[i-1][0...j] f[i1][0...j] ,这个过程是可以使用四边形不等式优化的。

  • 当邮局为 i-1 个,区间为 a[0…j] 时,如果在其最优划分方案中发现,邮局 1 ∼ i − 2 1 \sim i-2 1i2 负责 a[0…l] ,邮局 i-1 负责 a[l+1…j] 。那么当邮局为 i 个,区间为 a[0…j] 时,如果想得到最优方案,邮局 1 ∼ i − 1 1 \sim i-1 1i1 负责的区域不必尝试比 a[0…l] 小的区域,只需要尝试 a [ 0... k ] ( k ⩾ l ) a[0...k](k \geqslant l) a[0...k](kl)
  • 当邮局为 i 个,区间为 a[0…j+1] 时,如果在其最优划分方案中发现,邮局 1 ∼ i − 1 1 \sim i-1 1i1 负责 a[0…m] ,邮局 i 负责 a[m+1…j+1] 。那么当邮局为 i 个,区间为 a[0…j] 时,如果想得到最优方案,邮局 1 ∼ i − 1 1 \sim i-1 1i1 负责的区域不必尝试比 a[0…m] 大的区域,只尝试 a [ 0... k ] ( k ⩽ m ) a[0...k](k \leqslant m) a[0...k](km)

时间复杂度为 O ( n 2 ) O(n^2) O(n2)

目前对四边形不等式优化大概有一个认识:通过确定枚举的上下界,优化动态规划中无用的重复枚举过程。

代码:
#include <cstdio>
#include <algorithm>

using namespace std;

const int N = 3001;

int n, num;
int w[N][N];
int x[N];
int f[N];
int s[N];

int main(void) {
    scanf("%d%d", &n, &num);
    for ( int i = 0; i < n; ++i )
        scanf("%d", x + i);
    for ( int i = 0; i < n; ++i ) {
        for ( int j = i + 1; j < n; ++j )
            w[i][j] = w[i][j - 1] + x[j] - x[i + j >> 1];
        f[i] = w[0][i];
    }
    
    int minK = 0, maxK = 0, cur = 0, t;
    for ( int i = 1; i < num; ++i ) {
        for ( int j = n - 1; j >= i; --j ) {
            cur = 1 << 30;
            minK = s[j];
            maxK = j == n - 1 ? n - 1 : s[j + 1];
            for ( int k = minK; k <= maxK; ++k ) {
                t = f[k] + w[k + 1][j];
                if ( t <= cur ) {
                    cur = t;
                    s[j] = k;
                }
            }
            f[j] = cur;
        }
    }
    printf("%d\n", f[n - 1]);
    return 0;
}
  • 3
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值