Good Luck in CET-4 Everybody!
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7710 Accepted Submission(s): 4954
Problem Description
大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此。当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考前的放松,所谓“张弛有道”就是这个意思。这不,Kiki和Cici在每天晚上休息之前都要玩一会儿扑克牌以放松神经。
“升级”?“双扣”?“红五”?还是“斗地主”?
当然都不是!那多俗啊~
作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的:
1、 总共n张牌;
2、 双方轮流抓牌;
3、 每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
4、 抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢?
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。
Good luck in CET-4 everybody!
“升级”?“双扣”?“红五”?还是“斗地主”?
当然都不是!那多俗啊~
作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的:
1、 总共n张牌;
2、 双方轮流抓牌;
3、 每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
4、 抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢?
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。
Good luck in CET-4 everybody!
Input
输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。
Output
如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。
Sample Input
1 3
Sample Output
Kiki Cici
Author
lcy
Source
Recommend
解题思路:
①n是三的倍数时,是必败点。
From简单证明一下:3的倍数是必败状态。
- 如果n % 3 = 1,那么拿走1个石子;如果n % 3 = 2,那么拿走两个石子,都将转移到3的倍数的状态。所以每个必胜状态都有一个后继是必败状态。
- 如果n % 3 = 0,因为2i里面没有一个是3的倍数,所以不管怎么拿,剩下的石子数n' % 3 != 0.所以每个必败状态的所有后继都是必胜状态。
②用sg函数做。
AC①
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
int n;
while(~scanf("%d",&n))
{
if(n%3)printf("Kiki\n");//必败点
else printf("Cici\n");
}
return 0;
}
AC②
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 1010
int f[MAXN];
bool sg[MAXN];
void solve()
{
int i,j,cnt=9;
f[0]=1;
for(i=1; i<=9; i++) //1000内的2次幂数
f[i]=f[i-1]*2;
sg[0]=false;
for(i=1; i<=1000; i++) //求sg值,i表示牌的数目
{
sg[i]=false;
for(j=0; j<=cnt; ++j)
sg[i]|=f[j]<=i&&!sg[i-f[j]];
}
}
int main()
{
int n;
solve();
while(~scanf("%d",&n))
{
if(sg[n]) printf("Kiki\n");//必败点
else printf("Cici\n");
}
return 0;
}
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 1010
int sg[MAXN],f[MAXN],temp[MAXN];
void solve()
{
int i,j,cnt=9;
f[0]=1;
for(i=1; i<=9; i++) //1000内的2次幂数
f[i]=f[i-1]*2;
memset(sg,-1,sizeof(sg));
sg[0]=0;
for(i=1; i<=1000; i++) //求sg值,i表示牌的数目
{
memset(temp,-1,sizeof(temp));
for(j=0; j<=cnt&&f[j]<=i; ++j)
temp[sg[i-f[j]]]=0;//i-f[j]表示从i张牌中取走f[j]张后的状态
for(j=0;; ++j)//求mem
if(temp[j]==-1)
{
sg[i]=j;
break;
}
}
}
int main()
{
int n;
solve();
while(~scanf("%d",&n))
{
if(sg[n]) printf("Kiki\n");//必败点
else printf("Cici\n");
}
return 0;
}