树的概念与结构
• 有⼀个特殊的结点,称为根结点,根结点没有前驱结点。
• 除根结点外,其余结点被分成 M(M>0) 个互不相交的集合 T1、T2、……、Tm ,其中每⼀个集合Ti(1 <= i <= m) ⼜是⼀棵结构与树类似的⼦树。每棵⼦树的根结点有且只有⼀个前驱,可以有 0 个或多个后继。因此,树是递归定义的。
树相关术语
⽗结点/双亲结点:
若⼀个结点含有⼦结点,则这个结点称为其⼦结点的⽗结点; 如上图:A是B的⽗结点
⼦结点/孩⼦结点:
⼀个结点含有的⼦树的根结点称为该结点的⼦结点; 如上图:B是A的孩⼦结点结点的度:⼀个结点有⼏个孩⼦,他的度就是多少;⽐如A的度为6,F的度为2,K的度为0
树的度:
⼀棵树中,最⼤的结点的度称为树的度; 如上图:树的度为 6
叶⼦结点/终端结点:
度为 0 的结点称为叶结点; 如上图: B、C、H、I... 等结点为叶结点 分⽀结点/⾮终端结点:度不为 0 的结点; 如上图: D、E、F、G... 等结点为分⽀结点 兄弟结点:具有相同⽗结点的结点互称为兄弟结点(亲兄弟); 如上图: B、C 是兄弟结点
结点的层次:
从根开始定义起,根为第 1 层,根的⼦结点为第 2 层,以此类推;树的⾼度或深度:树中结点的最⼤层次; 如上图:树的⾼度为 4
结点的祖先:
从根到该结点所经分⽀上的所有结点;如上图: A 是所有结点的祖先
路径:
⼀条从树中任意节点出发,沿⽗节点-⼦节点连接,达到任意节点的序列;⽐如A到Q的路径为: A-E-J-Q;H到Q的路径H-D-A-E-J-Q⼦孙:以某结点为根的⼦树中任⼀结点都称为该结点的⼦孙。如上图:所有结点都是A的⼦孙
森林:
由 m(m>0) 棵互不相交的树的集合称为森林;
树的表示法
兄弟孩子表示法
*child, *brother;
二叉树
满二叉树
完全二叉树
⼆叉树性质
根据满⼆叉树的特点可知:
1)若规定根结点的层数为 1 ,则⼀棵⾮空⼆叉树的第i层上最多有 2i-1 个结点
2)若规定根结点的层数为 1 ,则深度为 h 的⼆叉树的最⼤结点数是 2h - 1
3)若规定根结点的层数为 1 ,具有 n 个结点的满⼆叉树的深度 ( log以2为底, n+1 为对数)
二叉树的存储结构
顺序结构
arr[ ]={ };
链式结构
二叉树二叉链表:左右指针,*left, *right
二叉树三叉链表:左上右指针,
实现顺序结构二叉树
⼀般堆使⽤顺序结构的数组来存储数据,堆是⼀种特殊的⼆叉树,具有⼆叉树的特性的同时,还具备其他的特性。
堆:
一种特殊的二叉树
1.------大堆(大根堆)
2.------小堆(小根堆)
堆的性质
child: i<------->parend:(i-1)/2
实现堆的结构
初始化堆
定义一个堆
//定义堆的结构---数组
typedef int HPDataType;
typedef struct Heap
{
HPDataType* arr;
int size;//有效的数据个数
int capacity;//空间大小
}HP;
初始化
void HPInit(HP* php);
void HPInit(HP* php)
{
assert(php);
php->arr = NULL;
php->size = php->capacity = 0;
}
销毁
void HPDestroy(HP* php);
void HPDestroy(HP* php)
{
assert(php);
if (php->arr)
free(php->arr);
php->arr = NULL;
php->size = php->capacity = 0;
}
判空
// 判空
bool HPEmpty(HP* php);
// 判空
bool HPEmpty(HP* php)
{
assert(php);
return php->size == 0;
}
HPDataType HPTop(HP* php)
{
assert(php && php->size);
return php->arr[0];
}
交换数值
void Swap(int* x, int* y)
{
int tmp = *x;
*x = *y;
*y = tmp;
}
堆的插入
size=capacity时,内存已满
2倍扩容 申请空间HPDataType*tmp
if (tmp=NULL,满了,申请不了
php->arr = tmp;
将 tmp
中的新内存地址赋值给 php->arr
,这样 php->arr
就指向了扩展后的数组
tmp给arr,capacity更新
在size位置插入
//堆的插入
void HPPush(HP* php, HPDataType x)
{
assert(php);
//判断空间是否足够
if (php->size == php->capacity)
{
//扩容
int newCapacity = php->capacity == 0 ? 4 : 2 * php->capacity;
HPDataType* tmp = (HPDataType*)realloc(php->arr, newCapacity * sizeof(HPDataType));
if (tmp == NULL)
{
perror("realloc fail!");
exit(1);
}
php->arr = tmp;
php->capacity = newCapacity;
}
php->arr[php->size] = x;
AdjustUp(php->arr, php->size);
++php->size;
}
堆顶的删除
删除堆顶不能用顺序表的方法,删除第一位,整体向前挪,因为可能不是小根堆,其次效率低
堆顶与堆尾交换 10<----->70
堆尾删除10;
堆顶向下调整算法
不断交换,跟child值小的交换
直到child==parent
void HPPop(HP* php)
{
assert(php && php->size);
//arr[0] arr[size-1]
Swap(&php->arr[0], &php->arr[php->size - 1]);
--php->size;
AdjustDown(php->arr, 0, php->size);
}
向上调整算法
向小堆插入6
child
parent=(child-1)/2
小堆
child比parent小,交换
child移动到parent位置
parent指针指向child的新parent
//向上调整算法
void AdjustUp(HPDataType* arr,int child)
{
int parent = (child - 1) / 2;
while (child > 0)//不需要等于,child只要走到根节点的位置,根节点没有父节点不需要交换
{
if (arr[child] < arr[parent])
{
Swap(&arr[parent], &arr[child]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
向下调整算法
void AdjustDown(HPDataType* arr, int parent, int n)
{
int child = parent * 2 + 1;//左孩子
//while (parent < n)
while (child < n)
{
//找左右孩子中找最小的
if (child + 1 < n && arr[child] > arr[child + 1])
{
child++;
}
if (arr[child] < arr[parent])
{
Swap(&arr[child], &arr[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}